#### National Polar-orbiting Operational Environmental Satellite System (NPOESS)



The Joint Capabilities and Opportunities of the Advanced Sounders on MetOp and NPOESS for NWP and Climate Monitoring in the GEOSS Era

**ITSC-16**, Session 12: Future Instruments 16<sup>th</sup> International TOVS Study Conference

Hotel do Frode and Conference Center, Angra dos Reis, Brazil May 12, 2008

Stephen A. Mango Chief Scientist, NPOESS Integrated Program Office 8455 Colesville Road, Suite 1450, Silver Spring, MD 20910-3320, USA Phone (301) 713-4801; Stephen.Mango@noaa.gov

### We are living in an emerging GEOSS Era ...



We are looking forward to contributors to & beneficiaries from the Societal Benefits Areas

### Nine Societal Benefits Areas for GEO/GEOSS "Potential U.S. Contributions to the GEOSS"

### **NPOESS Will Support All GEOSS Societal Benefit Areas**



#### **US GEO focusing on Six Near-Term Opportunities**

1.) Disasters

2.) Drought / National Integrated Drought Information System

3.) Land Observation

4.) Air Quality5.) Sea Level6.) Data Management

### **Polar-orbiting Systems : An Opportunity for Integration of Contributions**



**NPOESS / MetOp Span a Generation !** 

# NPOESS & MetOp

**Represent an Emerging "Mini-GEOSS" System for a Generation** 



### **NPOESS / MetOp Span a Generation !**

### Several Climate & Weather [NWP] Time Scales Covered "Integrated" Polar Satellite Constellations MetOp / NPP / NPOESS "First Generation" ~ 2010-2026 +



#### NPOESS 2<sup>nd</sup> Generation [NexGen] & European Post-EPS Notional

#### CALENDAR YEAR



## NPOESS/MetOp Sounders/Imagers/Ozone

### NPOESS 1330 Satellite

### MetOp 0930 (2130) Satellite



NPOESS Single Satellite Design with Common Sensor Locations and "Ring" Data Bus Allows Rapid Reconfiguration and Easy Integration

#### **"IASI/CrIS Features - Enabling a Meaningful Global Atmospheric Sounding System for NWP & Climate"**

| # of Channels                          |                                                                                                                                                                       | 8461                                                                                                                                                        | 1305                                                                                                                                                                                                      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sprectral Range<br>(cm <sup>-1</sup> ) |                                                                                                                                                                       | 650 to 770<br>770 to 980<br>1000 to 1070                                                                                                                    | 650 - 1095                                                                                                                                                                                                |
|                                        |                                                                                                                                                                       | 1080 to 1150<br>1210 to 1650<br>2100 to 2150<br>2150 to 2250                                                                                                | 1210 - 1750                                                                                                                                                                                               |
|                                        |                                                                                                                                                                       | 2350 to 2420<br>2420 to 2700                                                                                                                                | 2155 - 2550                                                                                                                                                                                               |
| Sprectral Res                          | solution (cm <sup>-1</sup> )                                                                                                                                          | 645   0.35     1210   0.35     2000   0.39     2450   0.45     2760   0.5                                                                                   | 650-1095<0.6251210-1750<1.252155-2550<2.50                                                                                                                                                                |
| Sensor<br>Parameters                   | Scan type<br>Scan rate<br>IFOV<br>IFOC size at Nadir<br>Sampling at Nadir<br>Swath<br>Swath<br>Field of Regard (FOR)<br># IFOV's Per FOR<br>Pixel/scan (FOVs x steps) | Step and dwell<br>8 sec. (30 steps earth & 3 calibration)<br>3°.33 x 3°.33<br>12 km<br>25 km<br>± 48.3°<br>± 1026 km<br>48 km<br>4 (2-by-2)<br>120 (4 X 30) | Step and dwell<br>8 sec. (30 earth & 2 calibration)<br>3°.3 x 3°.3<br>14 km<br>16 km<br><u>+</u> 48 1/3° each side of Nadir<br><u>+</u> 1100 km each side of Nadir<br>48 km<br>9 (3-by-3)<br>270 (9 X 30) |
| Field of Regard / Field of View        |                                                                                                                                                                       | 48km<br>25 km<br>12 km                                                                                                                                      |                                                                                                                                                                                                           |

National Polar-orbiting Operational Environmental Satellite System

# Future Opportunities: Over-flyers "Rich" Opportunity e.g.: NPP & A-Train

NPP Alt (~824 km) A-Train (Alt ~705 km)

Satellites in the same orbital plane, but at different altitudes would leverage the extensive cross-comparisons & cal/val efforts of the other satellite(s) (maybe in other trains).



Synergies, Synergies, Synergies ...

Adapted from S. Kidder et al.

### **Opportunities for Cross-Comparisons**



- Comparison of instruments on the same platform: CrIS/ATMS/VIIRS; Similar approaches as AIRS/AMSU/MODIS
- SNO method:

Simultaneous Nadir Overpass eliminates issues with viewing angles, atmospheric paths, observation time and location

• Cross-Comparisons with instruments on other platforms, e.g. A-Train instruments:

Very useful for aerosols, clouds, temperature and water vapor





**Different Ways To Carry Out Cross-Comparison In Terms of Platform(s)** 

Adapted from Frank Sun et al., NGST, 2008

### **Opportunities Simultaneous Nadir Overpasses (SNO)**

#### **LEO vs. LEO Cross-Comparison**



#### **LEO vs. LEO Inter-Calibration**



NOAA-18 [AM] & EOS-Terra [PM] e,g MetOp (1,2 or 3) [AM] & NPP [PM] = similar MetOp (1,2 or 3) [AM] & NPOESS (C1 or C3) [PM] = similar NPOESS (C2 or C4) [early AM] & NPOESS (C1 or C3) {mid AM]

### GEO vs. LEO Cross-Comparison



MetOp (1,2 or 3) [AM] & EOS/Hyperion e.g. MetOp (1,2 or 3) [AM] & NPP [PM] = similar MetOp (1,2 or 3) [AM] & NPOESS (C1 or C3) [PM] = similar NPOESS (C2 or C4) [early AM] & NPOESS (C1 or C3) {mid AM]

Orbit Trajectories courtesy of Changyong Cao and Mitch Goldberg, NOAA/NESDIS

### What Cross-Comparisons Can Do



- To provide <u>early on orbit quick look</u> of NPP/MetOp/NPOESS instruments & algorithms performance by comparing with other well understood/calibrated instruments & validated products.
- Independently and <u>periodically</u> calibrate, validate, & monitor NPP/Metop/NPOESS instruments, algorithm performance throughout the mission/instrument lifetimes.
- Independent evaluation for the <u>transfer of trends from EOS</u>, <u>MetOp</u>, through NPP, to NPOESS
- MetOp/NPP/NPOESS to be an important part of WMO Global Space-based Inter-Calibration System (GSICS)

NPP over-fly of A-Train, MetOp over-fly of A-Train, NPOESS C1 over-fly of NPP, providing unique opportunities for cross comparison of Environmental Satellite Data Records: from EOS, MetOp through NPP, to NPOESS

# **Overview of Cross-Comparisons**



#### **SDR Cross-Comparison (L1B, SDR data)** [Major emphasis by IPO]

Issues: location, time, scan angle, fp differences, & band & band characterization differences





**EDR** Cross-Comparison (L2, EDR products) [Emphasis by IPO for selected EDRs] Issues: resolution, algorithm differences (CTP, for example); instrument signatures

**CDR Cross-Comparison (L3 gridded data, higher level products)** [To be performed by other groups/agencies, e.g. NCEP/NASA/ECMWF]

**Three Levels of Cross-Comparison in Terms of Data Products** 

**3** Levels of Cross-Comparison for Sounding & Imaging Products

Adapted from Frank Sun et al.,NGST, 2008

Penultimate Sounding/Imaging Opportunity for Fly-over & Fly-under Cross-Comparisons

### **JAIVEx** (Joint Airborne IASI Validation Experiment)

International collaboration to validate radiance and geophysical products obtained by the Infrared Atmospheric Sounding Interferometer (IASI) aboard the MetOp satellite

- Location/dates
  - Ellington Field (EFD), Houston, TX, 14 Apr 4 May, 2007
- Aircraft
  - NASA WB-57 (NAST-I, NAST-M, S-HIS)
  - UK FAAM BAe146-301 (ARIES, MARSS, SWS; dropsondes; in-situ cloud phys. & trace species; etc.)
- Ground-sites
  - DOE ARM CART ground site (radiosondes, Raman Lidar, etc.)
- Satellites
  - Metop (IASI, AMSU, MHS, AVHRR, HIRS, ASCAT)
  - A-train (Aqua AIRS, AMSU, HSB, Modis; Aura TES; CloudSat; and Calipso)
- Participants
  - US : IPO, NASA, UW, MIT, MIT-LL, NOAA,
  - Europe : UKMO, EUMETSAT, ECMWF, ...







**WB-57** 



| <b>"Enabling a Meaningful<br/>Global Atmospheric &amp; Ozone Sounding System<br/>for NWP &amp; Climate "</b> |                                                   |                                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Timeliness                                                                                                   | MetOp<br>ASI/HIRS/AMSU/MHS<br>& GOME-2 & GRAS     | NPOESS<br>CrIS/ATMS<br>& OMPS & MIS                                                                            |  |  |
| Latency Requirement (Minute                                                                                  | s) 180                                            | 156 Threshold<br>15 Objective                                                                                  |  |  |
| Latency Performance (Minute                                                                                  | s) <b>104 – 135</b>                               | 28                                                                                                             |  |  |
| <b>Revisit Time (Hours)</b>                                                                                  | 12 (Any One Satellite)<br>6 (MetOp with 2 NPOESS) | 6 (Two OZONE Satellites) <sup>1</sup><br>6 (Two* Sounder Satellites) <sup>2</sup><br>*Incl. 1 NPOESS & 1 MetOp |  |  |

<sup>1</sup> 6 hour revisit for two phased satellites (OMPS on 1330 NPOESS & GOME-2 on METOP 2130)
<sup>2</sup> 6 hour revisit for three phased satellites (CrIS/ATMS/CMIS on NPOESS 1330 & IASI/AMSU/MHS/GOME-2/GRAS on 2130 MetOp; also MIS on NPOESS 2130 [C2C3,C4] )

### CrIS + ATMS = CrIMSS Will Allow Several Atmospheric/Surface Products to be Retrieved for NWP & Climate

• The **CrIMSS product algorithm**, developed by **AER** (SDR-to-EDR) and **BOMEM** (RDR-to-SDR), is an iterative physical retrieval algorithm to retrieve atmospheric temperature, moisture and pressure profile EDRs from the **Cross-track Infrared and Microwave Sounder Suite** (**CrIMSS**) measurements

• Retrieved Parameters will include:

- **Temperature Profile** (reconstructed from 20 temperature EOFs)
- Moisture Profile (reconstructed from 10 moisture EOFs)
- Pressure Profile
- Surface Temperature
- Surface IR Emissivity (at 12 frequency hinge points)
- Surface IR Reflectance (at 12 frequency hinge points)
- Ozone Total Column
- Surface MW Emissivity (reconstructed from 5 MW emissivity EOFs)
- MW Cloud Top Pressure and Cloud Liquid Water Path
- Additional possible Products [GHG / Trace Gases] (special cases) CO, N<sub>2</sub>0, CH<sub>4</sub>, CO<sub>2</sub>
  INPOESS Users' IOPD Requirements. Pro Planned Product Impr

[NPOESS Users' IORD Requirements, Pre-Planned Product Improvements]

### Trace/Greenhouse Gases (CO, CH<sub>4</sub>, CO<sub>2</sub>) NPOESS Users' P<sup>3</sup>I<sup>\*</sup> IORD EDR Requirements

### CH<sub>4</sub> Column

#### **CO** Column

### CO<sub>2</sub> Column

| CH <sub>4</sub><br>(Methane) | Objectives                      | CC<br>(Carbon Me   |
|------------------------------|---------------------------------|--------------------|
| Vert<br>Coverage             | Total Column                    | Vert<br>Coverag    |
| Horizontal<br>Resolution     | 100 km                          | Horizor<br>Resolut |
| Mapping<br>Uncertainty       | 25 km                           | Mappi<br>Uncerta   |
| Meas Range                   | 40-80<br>μmoles/cm <sup>2</sup> | Meas<br>Range      |
| Meas<br>Precision            | 1%                              | Meas<br>Precisio   |
| Meas<br>Accuracy             | 5%                              | Meas<br>Accura     |
| Latency                      | 15 min                          | Latency            |
| Refresh                      | 24 hrs                          | Refresh            |

| CO<br>(Carbon Monoxide)  | Objectives                 |
|--------------------------|----------------------------|
| Vert<br>Coverage         | Total Column               |
| Horizontal<br>Resolution | 100 km                     |
| Mapping<br>Uncertainty   | 25 km                      |
| Meas<br>Range            | 0-7 μmoles/cm <sup>2</sup> |
| Meas<br>Precision        | 3%                         |
| Meas<br>Accuracy         | +/-5%                      |
| Latency                  | 15 min                     |
| Refresh                  | 24 hrs                     |

| CO <sub>2</sub><br>(Carbon Dioxide) | Objectives                              |  |
|-------------------------------------|-----------------------------------------|--|
| Vert<br>Coverage                    | Total Column                            |  |
| Horizontal<br>Resolution            | 100 km                                  |  |
| Mapping<br>Uncertainty              | 25 km                                   |  |
| Meas<br>Range                       | 11,000-15,000<br>μmoles/cm <sup>2</sup> |  |
| Meas<br>Precision                   | 15-20 μmoles/cm <sup>2</sup>            |  |
| Meas<br>Accuracy                    | TBD                                     |  |
| Latency                             | 15 min                                  |  |
| Refresh                             | 24 hrs                                  |  |

•P<sup>3</sup>I = Pre-Planned Product Improvement Requirements in NPOESS Users' Integrated Operational Requirements Document [IORD II]

All three trace gas EDRs require :

- Total column measurement
- 100 km horizontal resolution
- No Thresholds, only Objectives in IORD



#### **Possible Future CrIS Capability e.g.** Carbon Monoxide [CO] Trace Gas Profiling & Column Density

Airborne NAST- I EAQUATE AIRS Validation Campaign 14 and 18 September 2004



Spaceborne AQUA AIRS CO Daily Averages - Month of July 2004 At Single Height Level - 500 mb



#### NAST- I CO Vertical Cross Sections CO [carbon monoxide] in ppbv



AIRS CO at 500 mb on 20040701



# Muito Obrigado para sua atenção !