

## Exploring Using Artificial Intelligence (AI) for Remote Sensing, NWP and Situational Awareness (SA)

S. Boukabara\*, E. Maddy<sup>+</sup>, A. Neiss<sup>+</sup>, K. Garrett<sup>+</sup>, E. Jones<sup>+</sup>, K. Ide<sup>~</sup>, N. Shahroudi<sup>~</sup> and K. Kumar<sup>+</sup>

\*NOAA/NESDIS Center for Satellite Applications and Research (STAR), College park, MD, USA

<sup>+</sup> Riverside Technology Inc. (RTI) @ NOAA/STAR, College park, MD, USA

<sup>~</sup> University of Maryland (UMD), College Park, MD, USA







Why Artificial Intelligence (AI) ? Background and Motivations

Methodology & Description



AI for Remote Sensing and Data Assimilation/Fusion/NowCasting



#### Conclusions

#### **Expected Increase in HPC requirements and Data Volume**

(for ECMWF NWP center: using currently 5-10% of satellite data)



NOAA Data Volume graph, Courtesy Steve Del Greco & Ken Casey, NOAA/ NCEI (via Jeff de La Beaujardiere)



### Why AI?



- Medical field (Watson Project): Scan Image Analysis, Cancer detection, heart Sound analysis
- In finance: Algorithmic Trading, market data analysis, portfolio management
- In Music: Composing any style by learning from huge database & analyzing unique combinations.
- Self-Driving Transportation Devices: Fusion of Multiple Observing Systems for situational awareness
- We believe Environmental data exploitation (remote sensing, data assimilation and perhaps forecasting), presents a viable candidate for AI application.
- <u>This presentation is meant to present a few</u> examples to convey that the potential is significant.

## SOC CORP OF THE SOC CORP OF TH



#### <u>Neural Network vs Deep Learning (AI)</u>

# Exploring AI for Remote Sensing, NWP & Situational Awareness (SA). Status





#### How to assess that AI-based output (Satellite Analysis) is valid?

- (1) Assessing quality by comparing against independent analyses
- (2) Assessing Radiometric Fitting of Analysis
- (3) Assessing analysis spatial coherence
- (4) Assessing interparameters correlations

### Pilot Project: MIIDAPS-AI:



Multi-Instrument Inversion and Data Assimilation Preprocessing System

Exploring Artificial Intelligence for Remote Sensing/Data Assimilation/Fusion Applications

#### Google TensorFlow Tool used for MIIDAPS-AI

MIIDAPS-AI outputs (TPW) Using SNPP/ATMS Real Data







**Reference source of TPW: ECMWF Analysis** 

16

23

31

39

TPW, [mm]

47

54

62

70



#### (1) Performance Assessment (T, Q)



ND ATMOSA

ECMWF used as independent reference set. Clear and cloudy points. All surfaces included.

### (2) Convergence Assessment (CrIS Case)





AI-based analysis is fed to CRTM and then simulation is compared to CrIS radiances

#### (3) Spatial Coherence Assessment





Water vapor fields and Temperature fields generated by AI (and satellite data) are consistent with those from ECMWF, except for high variability scales (as expected)

Spatial coherence – Global Temperature and Water Vapor 1D power spectrum from ATMS and ECMWF

### (4) Inter-Parameters Correlation Assessment



Water vapor, temperature and Skin temperature generated by AI applied to ATMS are correlated with each other in a similar way that those same parameters obtained from an NWP analysis, are.





## Can Al Be Used as Forward Operator?



#### CRTM/AI-Chan21 **Status:** CRTM- Chan21 EOF of Geoph Data Used as Inputs Only clear sky was tested Only surface-blind channel tested ATMS tested. All channels together CRTM-CRTM/AI-Chan 21 **Variational N-dVAR** ~million points used: **Measured Radiances** Jacobians need to be Quick test: CRTM use Yes **Potential Advantages:** Solution Comparison: Fit **Simulated Radiances** Multiple Orders of ma Within Noise Level ? Reached Allows using this in a No setting (inversion, DA Update ~1000 Is just an extension of -3.3 -1.1 1.1 3.3 5.6 7.8 10.0 Temperature, [K] State Vector Vector faster implementation of tru (Line-By-Line Models) Initial State **Does not Replace LBL** AI-Based **ForWard New State Vector** training just like CRTN Operator **Next Steps: CRTM** Use LBL as training Assess in variational setting Processing Time for a full day data. A single ~ 1.3 hours <1 second sensor channel(ATMS). Excluding I/O Extend (cloudy, surface, IR, Jacob., etc)

#### **Does Al Have Predictive Applications?**





This simple model has potential to:

- (1) Compute AMV from tracers ( at t=0) based on spatial AND vertical tracing
- (2) Correcting short-term forecast to adjust systematic errors and displacements (t=1 or 2, 3,...)
  (3) NWP (t=N)

#### Questions:

Can we predict AMV center of box at T=0 timestep using the ~ 100 inputs parameters?

Can we improve prediction at Time step 1 if we set a target to match?



### Correcting TPW Forecasting with AI?





Al increment shows some dipoles indicating that the correction is adjusting the position of some features – Most notably the position of Harvey (Texas) and off the Eastern coast of N.America

### Conclusions



- Increase in number, diversity and sources of global observing systems (GOS) including private sector. This presents unprecedented (and welcome) added resiliency and quality of the GOS. However this presents challenges: Cost and infrastructure to leverage/exploit them.
- Computing constraints, perhaps require us to explore new approaches for the future (not so distant). AI-Based Analyses (satellite-exlusive) are found to be radiometrically, spatially and geophysically consistent with traditional analyses.
- Soal of this study is not to show AI can do better, but that it can provide at least similar quality, much faster. It appears to be doing that.
- \* Different components can benefit from AI (Inversion, Data Assimilation, RT, QC, Data Fusion,...) for NWP and Situational Awareness SA.
- Encouraging results so far were found when assessing derivation of AMV using AI (not shown) and when assessing the feasibility of correcting GFS forecasts (using ECMWF as a target). Pointing to the potential for using AI for actual forecasting (at least short-term).
- **\*** Training is key for AI. Nature Run Datasets presents a good source for this.
- Pursuing AI applications, we believe, will allow us to :
  - (1) Reduce pressure on Infrastructure (ground systems), HPC and cost
  - (2) benefit from new environmental data (and face increased volume), including satellite data from all partners, including IoT
  - (3) Improve Latency
  - (4) Reduce cost of running legacy systems (remote sensing and data assimilation/fusion systems)
  - (5) Increase percentage of satellite data being assimilated (improved thinning, QC-ing, faster processing, etc)
  - (6) Reduce time to run OSE/OSSE and in general data assimilation/fusion systems, for decision making purposes
  - (7) <u>Perhaps</u> Improve forecast as a result of above and because AI can be exploited for forecast improvement

### Methodology and Description

(baby steps)



#### **Training & Verification:**

- Scope of the effort: RS and Forecasting Adjustment
  - o focus on satellite-based analyses (RS), focusing on an enterprise algorithm used for inversion and assimilation pre-processing
    o but also assess capability of short term forecast correction
    o focus on atmosphere (T, Q, Wind) but highlight surface parameters and hydrometeors capability as well
- **Tools:** Google TensorFlow
- Real data
  - Focus on SNPP/ATMS and SNPP/CrIS

- Sets: ECMWF Analyses, G5NR fields, GDAS Analyses
- Noise addition: uncorrelated, Gaussian distributed noise with spread of (instrument noise\*2) is added to simulations
- Sampling: Training data is randomly selected from a fixed set of ~5% of a days worth of data in each training epoch
- Simple training (sample over a day generally
- Independent sets used for verification, but still the same period