

Introducing NOAA's Microwave Integrated Retrieval System (MIRS)

S-A. Boukabara, F. Weng, R. Ferraro, L. Zhao, Q. Liu, B. Yan, A. Li, W. Chen, N. Sun, H. Meng, T. Kleespies, C. Kongoli, Y. Han, P. Van Delst, J. Zhao and C. Dean

NOAA/NESDIS

Camp Springs, Maryland, USA

15th International TOVS Study Conference (ITSC-15), Maratea, Italy, October 9th 2006

Algorithm Scientific Basis

Performance Evaluation

Summary & Online Access

Overview

Stated Goals of MIRS

- Algorithm for sounding, imaging, or combination thereof
- Applicable to all Microwave Sensors
- Extend over non-oceanic surfaces & in all-weather conditions
- Operate independently from NWP model forecasts

Benefits

- Reduction of Time/Cost to Adapt to New Sensors
- Reduction of Time/Cost to Transition to Operations
- Improvements in Severe Weather Forecasts
- Better Climate Data Records

NO ADMON

TWENT OF

2

Performance Evaluation

Summary & Online Access

Cost Function to Minimize:

 $J(X) = \left[\frac{1}{2}(X - X_0)^T \times B^{-1} \times (X - X_0)\right] + \left[\begin{array}{c} \text{Jacobians \& Radiance Simulation} \\ \text{from Forward Operator: CRTM} \end{array}\right]$ $\bullet \text{ To find the optimal solution, solve for: } \frac{\partial J(X)}{\partial X} = J'(X) = 0$ $\bullet \text{ Assuming Linearity } y(x) = y(x_0) + K[x - x_0]$ $\bullet \text{ This leads to iterative solution: }$

$$\Delta X_{n+1} = \left\{ B^{-1} + K_n^T E^{-1} K_n^T K_n^T E^{-1} \right\} \left[(Y^m - Y(X_n)) + K_n \Delta X_n \right]$$
$$\Delta X_{n+1} = \left\{ B^{K}_n^T K_n B^{K}_n^T + E \right\}^{-1} \left[(Y^m - Y(X_n)) + K_n \Delta X_n \right]$$

More efficient (1 inversion)

Preferred when nChan << nParams (MW)

- Convergence Metric: χ^2
- Uncertainty matrix S: $S = B - B \times K^{T} (K \times B \times K^{T} + E)^{-1} \times K \times B$
- Contribution Functions D: indicate amount of noise amplification happening for each parameter.

$$D = B \times K^{T} \left(K \times B \times K^{T} + E \right)^{-1} \times \left(Y(X) - K \times X_{0} \right)$$

• Average kernel A: $A = D \times K$

- If close to zero, retrieval coming essentially from background
- If close to unity, retrieval coming from radiances: No artifacts from background

System Design & Architecture

NO ATHON

TWENT OF

Algorithm Scientific Basis

Performance Evaluation

Summary & Online Access

Performance Evaluation

QC of the Validation Set

MSPPS: NOAA's operational system responsible for deriving microwave products

	MSPPS (bias)	MIRS (Bias)	MSPPS (Std)	MIRS (Std)	Improvement (%)
N15	1.87	0.49	4.57	3.85	16%
N16	1.31	-1.10	4.22	3.85	9%
N17	2.51	-0.2	4.26	3.30	23%

Average TPW Standard Deviation Improvement is 16% over ocean

Better scan angle handling

NOAA

Independence from NWP forecast outputs

Capability extended over land

Performance Evaluation

- Raob Profiles with at least 30 levels used. Ocean cases only. Retrievals up to 0.05 mbars. Assessment only up to 300 mbars.
- These are <u>real data</u> performances (stratified by sensor)
- Results shown here are cloudy (up to 0.15 mm from MIRS retrieval)
- Independent from NWP forecast information, including surface pressure
- Improvements in progress (scan-dependent covariance Matrix, air-mass preclassification, etc)

Temperature Std Deviation Error

Performance Evaluation

Microwave TPW Extended over Land

Global Temperature Profiling

Similar Features Captured

Challenges of Profiling in Active Areas

NOAA

TWENT OF

N-18 Profiling In Active Areas

Algorithm Scientific Basis

4

Performance Evaluation

MIRS Applications

Online Access

Online Scrolling Menus

NOAA Satellites and Information National Environmental Satellite, Data, and Information Service

Sensor Physics Branch

Microwave Integrated Retrieval System

Products Performance Monitoring – Functionalities (cont'd)

3.10 3.12 3.15 3.18 3.20

1011011

BUIS

3.23

215

227

Thank You !

Questions?

BACKUP SLIDES

Core Retrieval Mathematical Basis

ex

$$\begin{array}{l} \text{Maximizing} \quad P(X \mid Y^{m}) = \\ \left\{ exp \left[-\frac{1}{2} (X - X_{0})^{T} \times B^{-1} \times (X - X_{0}) \right] \times exp \left[-\frac{1}{2} (Y^{m} - Y(X))^{T} \times E^{-1} \times (Y^{m} - Y(X)) \right] \right\} \\ \text{Is Equivalent to Minimizing} \\ - \ln \left(P(X \mid Y^{m}) \right) \end{array}$$

Which amounts to Minimizing J(X) –also called COST FUNCTION – Same cost Function used in 1DVAR Data Assimilation System

$$J(X) = \left[\frac{1}{2}(X - X_0)^T \times B^{-1} \times (X - X_0)\right] + \left[\frac{1}{2}(Y^m - Y(X))^T \times E^{-1} \times (Y^m - Y(X))\right]$$

32

System Design & Architecture

- The PDF of X is assumed <u>Gaussian</u>
- Operator Y <u>able to simulate measurements-like</u> radiances
- Errors of the model and the instrumental noise combined are assumed (1) <u>non-biased</u> and (2) <u>Normally</u> distributed.
- Forward model assumed <u>locally linear</u> at each iteration.

All retrieval is done in EOF space, which allows:

- Retrieval of profiles (T,Q, RR, etc): using a limited number of EOFs
- More stable inversion: smaller matrix but also quasi-diagonal
- Time saving: smaller matrix to invert

Mathematical Basis:

- EOF decomposition (or Eigenvalue Decomposition)
 - By projecting back and forth Cov Matrx, Jacobians and X

Retrieval in Logarithm Space

Use of Multiple Microwave Sensors:

- AMSU A/B (or MHS) onboard NOAA-15-16-17-18
- WINDSAT onboard CORIOLIS
- SSMI/S onboard DMSP F-16

Two Types of Validation, depending on parameter

- Quantitative Validation
 - NWP Data (GDAS)
 - Heritage Algorithms (MSPPS)
 - Conventional Radiosondes (from NCEP and from NCDC)
 - GPS-DropSondes
- Qualitative Validation
 - Science Constraints in Retrieval System
 - Capture of known meteorological phenomena

Metrics:

- Standard statistical metrics Bias/RMS/StdV/Correlation
- Case By Case Evaluation (especially for active areas)

MSPPS TPW used as reference

 MIRS retrieves the humidity profile.
The TPW is integrated in postprocessing stage.

MSPPS relies on NWP forecast for both SST and Wind (emissivity).

MIRS is independent of NWP data (even from surface pressure).

Cloud Retrieval Using SSMI/S

In-Situ Global Distribution

	Source	Period	Coverage	# of Points	Ref.
POES NOAA15	NCEP	2002-2004	Ocean	1255	Liu & Weng 2004
POES NOAA16	NCEP	2002-2004	Ocean	1655	Liu & Weng 2004
POES NOAA17	NCEP	2002-2004	Ocean	1522	Liu & Weng 2004
POES NOAA18	NCDC-IGRA	2005-2006	Land	~8,000	Durre et al. 2006

Match-up TPW from radiosondes and AMSU retrieval in 2002. Bias variation to viewing angles. Bias = radiosonde – AMSU

Emissivity Qualitative Validation

Emissivity Difference @ 31 GHz

Global Humidity Profiling

GDAS Water Vapor Content at 500mb 2006 No Scan-dependence noticed: Angle dependence properly 7560 accounted for 45 30 15 MIRS NOAA-18 AMSU-A/MHS EDR Water Vapor Content at 500mb 2006 - 02 - 01-15 75 -3060 - 41 4Б -6030 -75 60 90 120 -1800 g/kg -1E NoDete 0 0 2.80 1.051.40 1.752 10 2 45 0.35 -30 -4!-60-7F - 90 150 180 -180 80 g/kg NoData п 0 0.00 0.35 0.70 1.051.40 1.752.80 3.15 3.50

WINDSAT Retrieval (Chi Square)

Rain Model OFF

Rain Model ON

Retrieval using Windsat data (sdr68) Spatial resolution of 6.8 GHz (50 kms) But with a lot of oversampling

ChiSq EDR_fws_d20050706_s210542_e2

47

5.00

During Hurricane Dennis on July 6th 2005, WINDSAT Data captured Skin Temperature Cooling inside Eye of Hurricane

