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Abstract

We show the improved performance of a joint retrieval algorithm of temperature, humidity,
ozone, and SST (more precisely, the latter is the surface skin terepature of the ocean) com-
pared to more specific retrieval setups. The joint algorithm was deeloped based on optimal
estimation methodology and carefully tested under quasi-realisticanditions (using high res-
olution ECMWF analysis fields). The algorithm contains in a first step aneffective and fast
channel selection method based on information content theory, lich leads to a reduction
of the total number of IASI channels (>8400) to about 3.5% only (~300), which are subse-
quently used in the retrieval processing. We show that this redu@n is possible without re-
trieval performance decrease compared to using many more{2000) channels. Additionally,
it is shown that using standard climatology fields in the channel selein process does also
not decrease performance while significantly increasing computatimal efficiency. Finally,
the application and real-data-test of the algorithm with AIRS (Advanced Infrared Sounder)
data, a next step planned, is addressed.

Introduction

The IASI (Infrared Atmospheric Sounding Interferometer) instrumelhbe part of the core payload
of the METOP series of polar-orbiting operational meteorological satellitegiatly prepared for EU-
METSAT (first satellite to be launched in 2006). IASI is a Michelson typerfeotransform interferome-
ter which samples a part of the infrared spectrum contiguously from®43 to 2760 cn! (~15.5um
- 3.6 um) with an unapodized spectral resolution of 0.25¢mCompared to existing operational satellite
radiometers, this high spectral resolution instrument allows significantly iredragcuracy and vertical
resolution of retrieved temperature and humidity profiles, and also detizerse profiles and sea surface
temperature (SST). The instrument is also designed for detection of addlitiace gases and improved
cloud characterization.

In this study, simulated IASI measurements are used to estimate temperatunenaiddyhprofiles
and the surface skin temperature. We used the fast radiative transfet RIASI for forward modeling
and simulating the IASI measurements (see subse&boward Modeling). Due to performance and
numerical reasons a fast channel selection method based on informani@mictheory, which leads to
a reduction of the total number of IASI channels8400) to about 3.5% only~(300), is introduced in
the subsectioChannel reduction procedure. The retrieval of the atmospheric variables is prepared by
following the Bayesian approach for an optimal combinatiora@iriori data and new measurements
using a fast converging iterative optimal estimation algorithm (Rodger€))466e subsectioRetrieval
Algorithm).



The retrieval algorithm is then applied to a quasi realistic METOP/IASI orbit¢for September 15,
2002. Results for this case study are presented in the sdasoits. A summary of the work presented
as well as suggested improvements and future steps on the IASI retrielbdm are given in the section
Summary and Outlook.

Data Simulation and Retrieval Methodology

This section briefly describes the retrieval scheme, the forward modelioty@d, the main aspects
of the retrieval algorithm itself, and the procedure of information contaset channel reduction. The
description follows (Lerner et al., 2002), and (Weisz et al., 2003) ane: metails can be found there.
Those earlier studies used the same methodology as applied here but kedddinhe development of
single parameter (temperature-only and humidity-only) retrieval schemes.

Forward Modeling

For a successful retrieval of atmospheric parameters within the frarkexan optimal estimation
approach as adopted here, the underlying physics of the measureseédstto be properly modeled by
a forward model solving the radiative transfer equation. At the same timepeipmodeling of the
"Jacobian matrix” (also termed "weighting function matrix”, i.e., the derivatif¥¢he forward model
with respect to the state vector) is quite important, especially with regard to ¢atigmal efficiency,
since (moderate) non-linearities in the problem of interest demand an iestdite estimation.

For simulating the measurement vector and calculakifg) = T (Tp: brightness temperature)
and the JacobiarK = 0F(x)/0x, the fast radiative transfer model RTIASI (Matricardi and Saunders
1999) was used, which uses temperature, humidity, and ozone profdesoare surface parameters
(e.g., surface skin temperature, surface air temperature, etc.) as mpilteg furnishes simulated IASI
brightness temperature measurements and Jacobians of the input atricospéeles for any desired
subset of IASI channels. This model calculates level-to-space transceistan 43 fixed pressure levels
spanning from 0.1 hPa-65 km height) to surface. We used these same levels, the so called "ATOVS
pressure level grid”, also as our retrieval grid (all 43 levels for tempee, the lowest 28 levels for
humidity).

Retrieval Algorithm

The inverse problem associated with equagios F(x) +¢, i.e., the retrieval of temperature, humid-
ity, and ozone profiles and of SSA, from brightness temperature measurementss approached by the
concept of Bayesian optimal estimation described in detail by (Rodgdd8).2@/ith the assumption of
Gaussian probability distributions and a linearized forward model, we ehaéesst converging iterative
optimal estimation algorithm (Rodgers, 2000):

Xi+1 = Xap + SiK;fFSE_I (y —yi) + Ki(xi — xqp)], (1)

where the subscriptis the iteration indexx; ;1 andx,, are the iterated and priori state vectors,
respectively T, Inq, and SST combined in one state vector), &ds the retrieval error covariance

matrix, defined by:
1

S; = [S;pl + Ksze_le]i . (2)
HereS,, is thea priori error covariance matrix. The optimization scheme expressed by equalion (1
is usually termed the Gauss-Newton method and provides a reliable maxarpasteriori estimate for
"small residual” inverse problems as the one dealt with here (Rodged8).2h applying equation (1),
the iteration was initialized witkxy = x,, and state estimate;, measurement estimage = F(x;),
weighting function matrixK; = 0F(x)/0x |x=x,, and retrieval error covariance estim&g were
updated at each iteration stepntil convergence was reached.

Dependent on the quality of treepriori profile, the first or the first two steps may need special aid
with convergence due to linearization errors, which is often dealt with imektg the Gauss-Newton



scheme to the Levenberg-Marquardt scheme (Rodgers, 2000; RiatiKirchengast, 1999). We utilized
the more simple but for the present purpose equivalently effective sgteimtroduced by (Liu et al.,
2000) termed the "D-rad” method. This method leaves equation (1) unedajugtS. is modified in its

diagonal according to:

(y<n) _yi(n))Z’UQ(n) (3)

(67

Sc(n,n) = max

wherei is the iteration indexy (n) is the measurement value of channey(n) = F,(x;) is the forward
modeled measurement,is a (free) control parameter set to 4 for this study, ahgh) is the variance
of the measurement noise for channel n (the origh#h, n) values). (Liu et al., 2000) found the "D-
rad” extended Gauss-Newton algorithm to perform equally well or better tiine Levenberg-Marquardt
algorithm in aiding convergence when a poor initial guess profile wasigive

A Priori error Covariance Matrix

For the elements &,, we used an auto-regressive model variant and ad@&igethb be non-diagonal
such that there exists inter-level correlation and the non-diagonal ecwnpmfall off exponentially from
the diagonal, i.e.:

.. Zi — Zj
Sap(i,j) = 005 exp [—qu , 4)

whereo; ando; are the standard deviations at height (log pressure) leyelad z;, respectively, and

L is the correlation lengthL was set to 6 km for temperature, to 3 km for humidity, and to 10 km for
ozone and the standard deviation settings are specified in Table 1. Tie afhthe curves was set in
this way to approximately satisfy the ECMWF standard deviations for temperatd humidity; for
ozone a fixed value of 20 % over the whole RTIASI pressure rangesgebto obtain appreciable errors
since we created the ozone data out of the "true” data via perturbing thesmstently with thea priori
error covariance matrix (c. f. (Rodgers, 2000)) because the dailgtiens which are obtained from the
ECMWF model are quite small (as seen in inspecting the rms values of ozdine 24 h forecast field
with respect to the corresponding analysis field).

\ A priori profiles consistent with thea priori error covariance matrix \

Pressure [hPa] 0.10 1.50| 10.00| 1013.25 SST, SAT
Error [K] 4.00 4.00 1.50 1.50 1.50
Humidity
Pressure [hPa] 100.00| 200.00| 400.00| 1013.25
Error [%] 10.00| 60.00| 60.00 20.00

Ozone
Pressure [hPa] 0.10 1013.25
Error [K] 20.00 20.00

Table 1: Standard deviation values versus pressure values for tEmmeghumidity, and ozone (the values between this levels
are obtained via linear interpolation in log space).

Measurement Error Covariance Matrix

In order to create an appropriate (and consistent) measurement @vesiacice matrixS., we as-
sumed the squared IASI 1c noise values (obtained from Peter SchJUelS84ETSAT, personal com-
munications, 2000) to be the diagonal elements. Since they are specifie@faetence temperature
T, = 280 K the values are modified according to the actual brightness temperatseel ¢wathe Planck
law (c. f., (Weisz et al., 2003)).

Finally the temperature modified 1c noise values are superposed with an Or&rd model error
value to roughly account for errors in the forward model (Collard,8)99J. Eyre, The Met. Office,
personal communications 2000). The impact of the RTIASI forward medel on the IASI retrieval



accuracy is described in (Sherlock, 2000). Fig. 1 shows the raw 1&Sioise values and the modi-
fied values, according to a brightness temperature calculated for thetah8asd mid-latitude summer
profile.
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Figure 1: Square roots of the diagonal elements of the measurement@variance matris..

For the off-diagonal elements we assume a correlatjprbetween the three nearest neighboring
channels of 0.71, 0.25, and 0.04, according{p= c;;+/5::5;j, which we also have to account for in
S.. This produces an error covariance matrix with a rather steep desoenttfe main diagonal (Peter
Schluessel, EUMETSAT, personal communications, 2000).

Simulation of the measurement vector

Since we do not have true measurements, we add a random noiseAactorthe simulated mea-
surements in order to generate quasi realistic data. For the noise modetagp(obtained from Peter
Schluessel, personal communications, 2000) we first create normallpalistt random numbers with
standard deviation values according to the diagonal elements of the nmeastierror covariance ma-
trix. Since RTIASI calculates apodized radiances and brightness tetugearespectively, we apodize
this noise with a Gaussian function of a full width at half maximum of 0.5 tifr = 0.212 cm™1).

Channel Reduction Procedure

Since the full IASI spectra contain 8461 channels it is essential to rddisceumber and somehow
remove redundant information for computational and performancensaddence, our task is to find
a subset of channels which is sufficiently sensitive to the retrieved Vesialbherefore we remove the
channels above 2500 crh(spectral range 4 jom — here residual solar contribution becomes important)
and those channels whose "foreign” gas emissions contribute signifidarnttye measured brightness
temperature (i.e., 1220 crh - 1370 cnt! and 2085 cm! - 2200 cnT!). At this point we have still
about 6200 channels, which is still too much for our purpose.

Therefore we perform a further reduction of the number of channelgilizing two different meth-
ods: the information content theory and the maximum sensitivity approach.

In information content theory (e. g., (Rodgers, 2000)) one seeksdw kiow much information is
contained in a possible outcome by knowing it. If we select the channelsrg@ilyeby retaining the
channels with highest information content (H) and removing them fromegjuest calculations, we may
write:

H; = %log2 Si—1S;7], (%)



whereS; ;_, is the retrieval error covariance matrix. P&y thea priori error covariance matri8,, was
used.

As a simplified and faster alternative of using information content theoryawallso use an approach,
which is solely based on the weighting function matrix scaled by the measuremert (c. f. (Weisz
et al., 2003)). It is desirable to selectively choose those channelsvilsisument noise is small or the
measurement sensitivity to temperature an humidity perturbation is high. Thisieved by using the
following channel selection criterion which maximizes the sensitivity-to-eato, a matrix denoted by
H: )

H =S, ’K, (6)

whereS. is again the measurement error covariance matrix (with dropping the ngardibelements
for this purpose) an& is the Jacobian Matrix.

Results

The algorithm was tested for a quasi-realistic orbit of METOP with a full swéthe IASI instrument
(more than 22000 profiles) with an ECMWF analysis field of September 18,22 UTC, as "true”
field, the 24h forecast of this analysis as first guess for temperatdrawnidity, and data consistent
with thea priori error covariance matrices for ozone profiles and SST as first goeegdne and SST,
respectively (method see e. g., (Rodgers, 2000)).

The orbit ranges from Africa over Antarctica, the Pacific Ocean andétbgc region back to Africa
via eastern Europe. The red line delineates the suborbital track of th&OREatellite (see Fig. 2).
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Figure 2: Simulated quasi-realistic swath of the IASI instrument. The rediétireates the suborbital track for which retrieval
performance examples are shown.

The simulation study was done under clear air conditions. One topic we @rsifig on is to show
the equivalence of the retrieval results when performing the chanleetise scheme on a climatology
versus applying the same procedure on the forecast field (see Fay. t@niperature, Fig. 4, for SST,
Fig. 5, for humidity, and Fig. 6, for ozone). Another aspect highlightetdéscomparison of the two dif-
ferent channel selection methods outlined in subse@lwmnnel reduction procedure for three different
sets of numbers of channels (see Fig. 7).



Temperature Results

In general we can see that the bias arising in the stratospprriori data (left panel of Fig. 3) could
mostly be deleted by the inclusion of information from the IASI instrument (sedlmahd right panel
of Fig. 3).
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Figure 3:A priori minus "true” data and error statistic data for temperature profiles for iffereht initial data sets. Left panel:
24-hour forecast minus "true” data for temperature; middle pandlieval results for 24-hour forecast data for temperature
and humidity profiles combined with priori data consistent with tha priori error covariance matrices for ozone profiles
and SST as first guess and the CIRA86aQ climatology (Kirchengat 4989) with suitable ozone profiles obtained from
U. S. standard profiles used for the channel selection processpegbt:.the same first guess as in the middle panel but using
the forecast data themselves (except for ozone where us. stde piatfh were used) for the channel selection process. Legend:
bias (black line), 2 times standard deviation of bias (solid blue line), stdrakasiation (yellow line), rms (dashed blue line),
theoretical estimate of the rms of the finally accepted best state estimatal (gi@én line), diagonal elements of tagriori

error covariance matrices (red line).

A further comparison of the middle and the right panel of Fig. 3 which hagdué/alent meaning
of the comparison of the retrieval results for two different data setsingbé channel selection process
points out that the differences only occur in the second digit. Since tlgeudahe climatology for the
channel selection process is much more efficient than using the fodatasbecause we have to select
the channels only once (in comparison to a successive selection in thefaasng the forecast data),
we strongly suggest to perform the selection of channels used in thevaéfriecess on a climatology
rather than on forecast data.

Sea Surface Temperature Results

A closer examination of Fig. 4 shows that the retrieval exhibits better resulthé rms than the
theoretical estimate proposes. This can be explained by the fact thatribealeof SST is highly de-
pendent on the retrieval of the overlying atmosphere. Comparing theagratysis data of the SST only
retrieval (c. f. Fig. 4, (c)) with the results from the joint temperature, hitmidzone, and SST retrieval
(c. f. Fig. 4, (a-b)) the latter shows a significantly improved performaniceluding that empirical rms
data are quite consistent with the theoretical estimate whereas the SST aalyatetxhibits a small bias
and deviations of the results which are almost as large as the ones ugaata®in a closer examination
of the error analysis data of the single SST retrieval (i. e., splitting it up intpriid;, and high latitudes)
we find that the reason for these large errors lies in the tropics, moresglsecn regions with warm
sea surface temperature. The main physical reason behind this is thecaignifater vapor continuum
absorption over warm tropical oceans even in the "atmospheric windbarireels (e. g., (Liou, 2002)).
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Figure 4: Error statistic data for SST for three different sets: The inititdgkt of panel (a) corresponds to the middle panel of
Fig. 3, panel (b) corresponds to the right panel of Fig. 3, wheraaslfc) is, in contrast to the temperature plot, the result of
an SST only retrieval.

Humidity Results

Comparing the results of the retrieved humidity when using the joint algorithenKge 5) mostly
the same can be said as in the case of the estimation of temperature. We onceaogneze that the
resulting rms for the middle and the right panel of Fig. 5 is better than the tiearestimate of it and
once more the results for the different profile sets used in the charleetise process are quite the
same.
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Figure 5:A priori minus "true” data and error statistic data for humidity profiles for two diferinitial data sets. Panel setup
and legend corresponds to Fig. 3

We tested also a joint temperature-humidity profile retrieval targeted to the dre®@® hPa and 500
hPa, a region of special interest to us, in order to check whether the tditmamidity becomes better
and processing significantly faster because of a more limited channdi@elfer this region. It turned
out, however, that this upper-troposphere-focused approachemamoderately faster and, in particular,
the retrieval performance somewhat degraded.



Ozone Results

Fig. 6 indicates that we get improvements of the ozone data only in regioriglotbncentration
of ozone ("ozone layer”) due to the fact that the weighting functionszoihe exhibit important peaks
only at this height. Just like in the case of temperature an humidity the resuttsefalifferent profile
sets used in the channel selection process are quite the same. In additiag fitund that the results
for temperature, humidity, and SST are quite independent from the initiakgufethe ozone data if it
remains in the domain of linearity or moderate non-linearity, respectivelyy(@ @6 uncertainty level).
This is also true vice versa.
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Figure 6: A priori data and error statistic data for ozone profiles for two different initial data. Panel setup and legend
corresponds to Fig. 3.

Channel Selection Results

As initial input set for all six cases we usedapriori data set which consists of data consistent with
the a priori error covariance matrices for temperature, humidity, ozone, and S®Tthfee different
sets of numbers of selected channels were chosen to get approximatélyl®% and 20% of the full
number of IASI channels which resulted in an averaged number of sglelctanels per profile of 300
channels (smallest dataset), 887 channels (medium dataset), and 4808lst{largest dataset).

An intercomparison of the temperature results (c. f. Fig. 7) shows that ¢oedtical estimation of
the rms is decreasing slightly with increasing number of selected channassisTiot the fact for the
empirical rms which is virtually the same for the small and the medium set but gesesdgnificantly
for the case of~1800 selected channels. Furthermore, the maximum set of selected Ishaasugts
in the appearance of slight bias structures which are not present inahatter sets resulting from the
beginning of numerical instabilities of the implemented inversion scheme (largeestrA comparison
of the two different channel selection methods (IC, top three panels of kigd MS, bottom three panels
of Fig. 7) yields no significant difference for the cases with the small amdngdium number of selected
channels, only the set with 1808 selected channels shows a slightly beftnmnce in the IC case
which can be traced back to the fact that the IC theory selects fewerljirdsgrendent channels.

In summary we can say that these results suggest that the simpler MS Ictelention approach, in
the case of using a climatology for the selection of the used channels hamibesfficiency as the IC
method and closely similar performance. Tentatively the IC results are sligittigrbpresumably due
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Figure 7: Panel layout as for Fig. 3 (see that legend). Explanatiotesee

to the more even distribution of the selected channels over height, so théeifiae seems generally
preferable.

Summary and Outlook

We presented a retrieval algorithm for determining temperature, humidity Sidff®m radiance
measurements made by the IASI instrument, scheduled for launch on-tibdrd METOP weather
satellite series (first satellite to be launched in 2006). Main features anesilksechannel reduction
procedure followed by an iterative optimal estimation retrieval. The chaedelction algorithm based
on the information content theory makes the retrieval efficient — the pooeedsults in a reduction of the
number of channels from more than 8400 to about 3.5% erBOQ channels). The retrieval performance
does not significantly degrade due to this reduction. We also showed ¢hinhalgorithm leads to a
clearly improved performance compared to more specific retrieval sefupls,as temperature-only or

SST-only, etc., retrievals.



We obtain a retrieval accuracy of about 1 K in temperature and 15% to 20% +400 hPa in
humidity, which is decreasing to about 35% at 200 hPa in humidity with a verésalution of 1 km
to 3 km in the troposphere. For the stratosphere we foundatpebri data exhibit important influence.
Some challenging areas arose in the mid-latitude regions and at heights whkhsemsitivity of the
weighting functions (e.g., the tropopause). For ozone, the best estimatedie$0% at a height of about
60 hPa but shows almost no difference to the assuanadlori error at heights lower than 400 hPa or
higher than 5 hPa.

The results of this study provide guidance for further advancements.c@rent and future work
plan includes improvements of tlaepriori covariance matrices for temperature and humidity and the
extension of the joint algorithm to other atmospheric species via an upgréue wsed forward model.

As a future step towards real data, the algorithm will then be applied to AMRISahced Infrared
Radiation Sounder) data, where our domain of particular interest is tlez trpposphere and its climatic
variability in humidity and temperature.
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