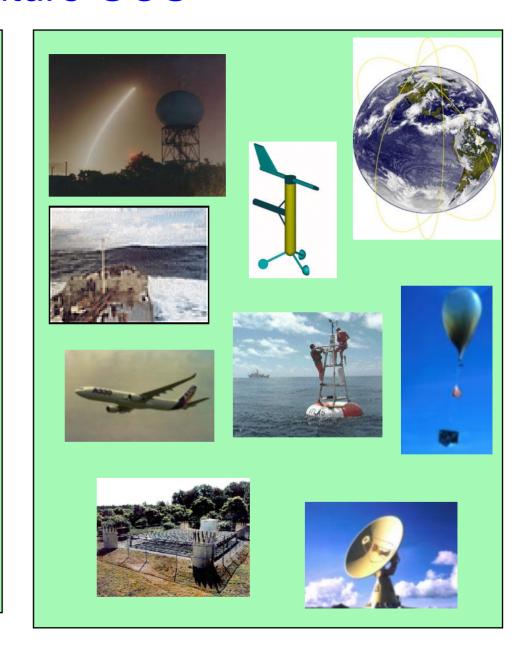

Evolution of the Global Observing System:

a Vision for 2025


John Eyre and Jérôme Lafeuille Met Office, UK WMO

Evolving the Global Observing System (GOS) of WMO

The future GOS

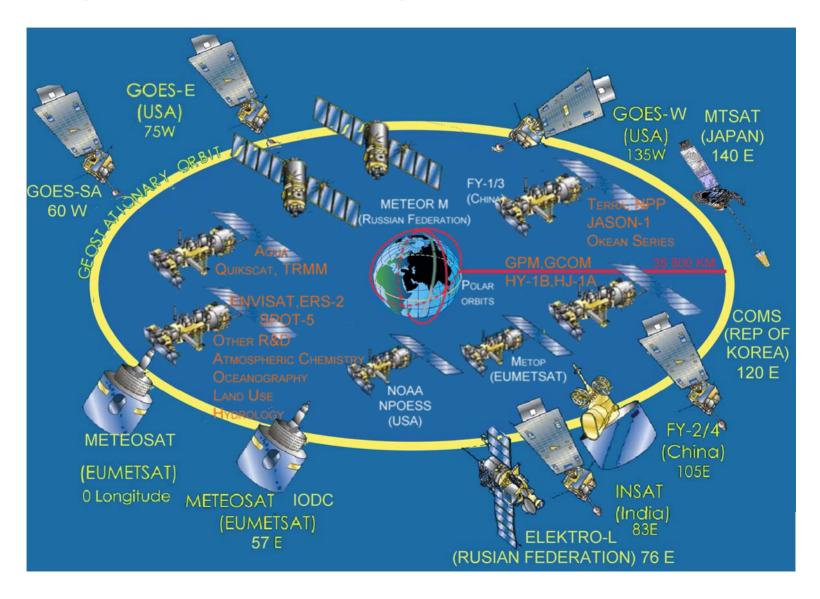
- globally co-ordinated
- built on existing components, both surfaceand space-based
- capitalise on existing and new observing technologies
- increasing role of space
- leading to improved data, products and services from NMHSs

Vision for the GOS in 2025

Document currently in draft

Content:

- General trends and issues
- Space-based component
 - operational geo
 - operational sun-synchronous leo
 - additional operational
 - R&D capability
- Surface-based component

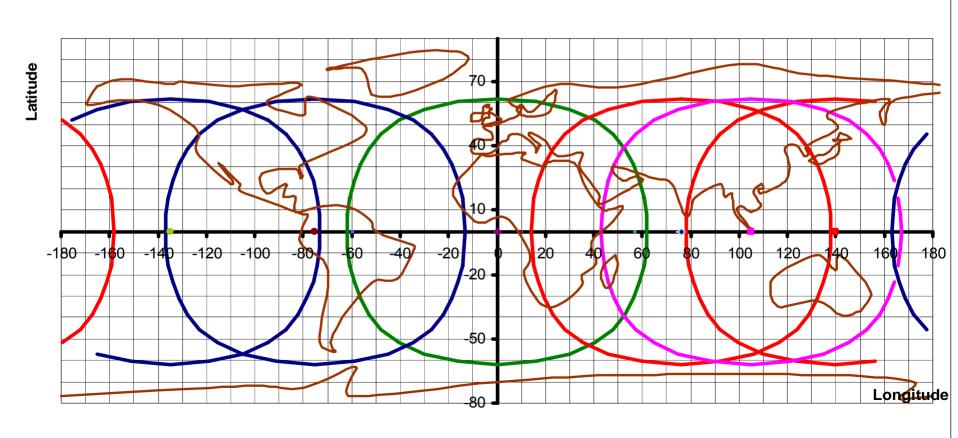

General trends and issues

- Response to user needs
- Integration WIGOS
- Expansion
- Automation
- Consistency and homogeneity

Space-based GOS: current Vision to 2015

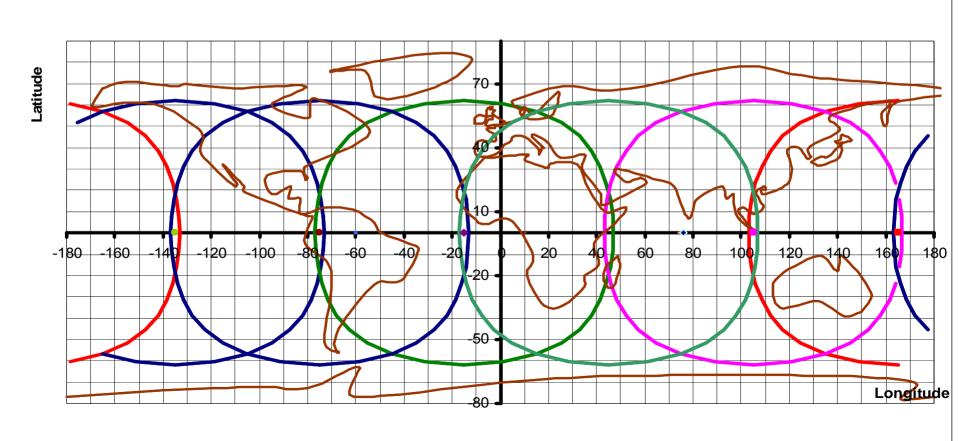
- 6 operational GEOs, all with multi-spectral imager (IR/VIS); some with hyper-spectral sounder (IR)
- 4 operational LEOs optimally spaced in time, all with multi-spectral imager (MW/IR/VIS/UV), all with sounder (MW), 3 with hyper-spectral sounder (IR), 2 with altimeter, 3 with conical-scan MW or scatterometer
- Several R&D satellites: constellation of small satellites for radio occultation (RO), LEO with wind lidar, LEO with active and passive microwave precipitation instruments, LEO and GEO with advanced hyper-spectral capabilities, GEO lightning
- Improved inter-calibration and operational continuity

Space-based component of the GOS


Proposed developments of space-based GOS under the draft Vision for 2025

Main themes:

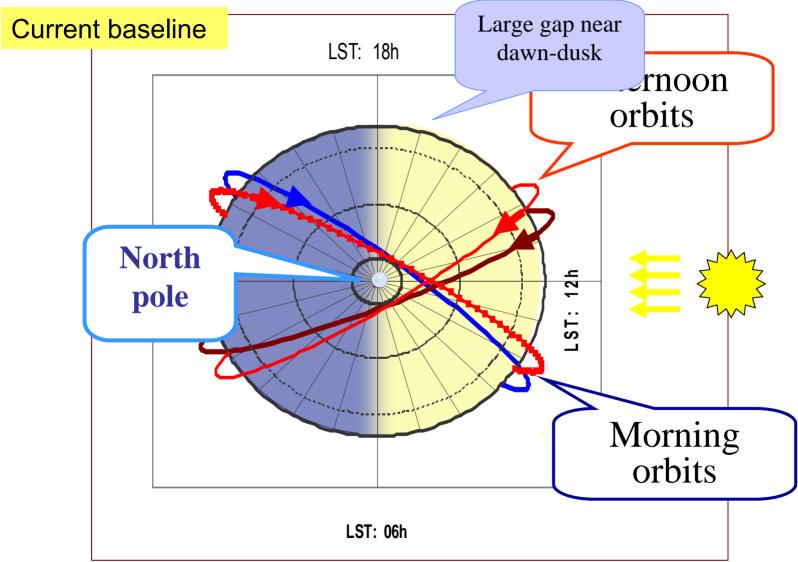
- Optimize current geostationary constellation
- Optimize current sun-synchronous orbit sounding missions
- Implement operational radio occultation sounding constellation
- Review ocean altimetry observation strategy
- Refine ocean surface wind vector observation strategy
- Make additional missions operational, e.g. for GCOS ECVs


Optimizing the geostationary constellation

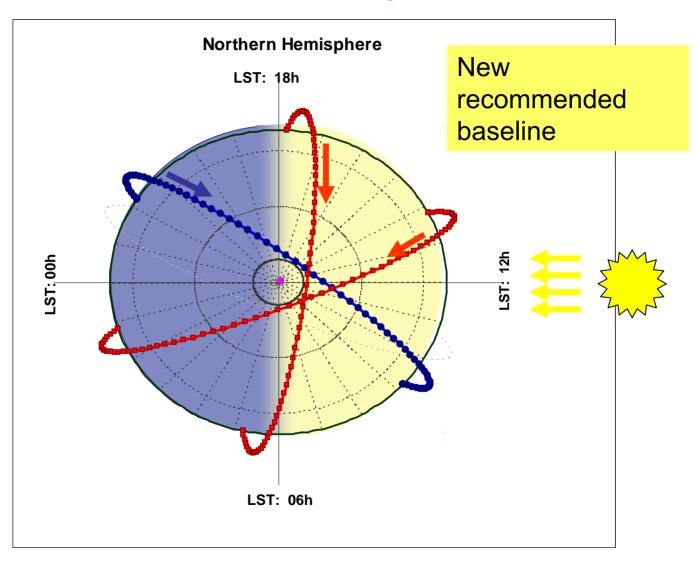
Current nominal locations: 135 W, 75W, 0, 76 E, 105 E, 140 E Footprints for a maximum zenith angle < 70 deg

Optimizing the geostationary constellation

Recommendation: a<u>t least</u> 6 satellites separated by ≤ 60° longitude with multispectral imager & hyperspectral IR sounder



IR hyperspectral sounding from geo orbit


Current plans of satellite operators:

- MTG / IRS (2018)
- FY-4 O / IIS (2016)
- GOES-R series / HES, under consideration after GOES-S
- MTSAT-FO / Sounder, under consideration by JMA-JAXA
- GIFTS: prototype instrument was proposed for a demo mission in 2010+ as part of IGeoLab cooperation concept


Optimizing sun-synchronous IR/ MW sounding missions

Optimizing sun-synchronous IR/ MW sounding missions

Optimizing sun-synchronous IR/ MW sounding missions

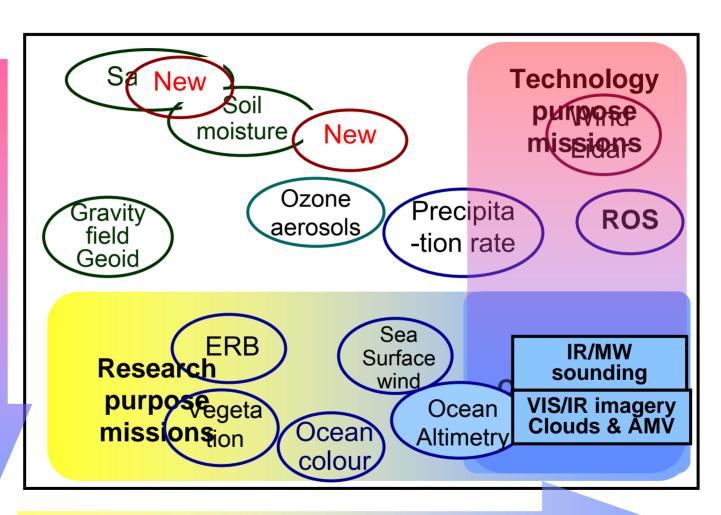
Radio occultation sounding

- Complementary to passive IR/MW sounding
- High number of satellites needed to meet coverage and observing cycle requirements
 - at least 6 satellites
 - optimal configuration TBD (including OSSEs)
 - constellation with several clusters / orbits

Scope for international cooperation

Transition of R&D missions to operations

Concept


Experiment

readiness

echnology

Demonstration

Operational technology

No continuity commitment

Long-term operational continuity

Vision for the space-based GOS in 2025: Summary (1)

At least 6 operational geostationary satellites:

- All with IR/VIS multi-spectral imager
- All with IR hyper-spectral sounder
- With no more than 60°longitude difference between neighbouring locations

Operational polar-orbiting sun-synchronous satellites on 3 orbital planes:

- All with IR/VIS multi-spectral imager
- All with MW sounder
- All with IR hyper-spectral sounder

Vision for the space-based GOS in 2025: Summary (2)

Additional operational missions in appropriate orbits:

- 2 sun-synch. sats with scatterometer
- 2 sun-synch. sats with conically-scanning polarimetric MW imager
- 2 sun-synch. sats with narrow-band VIS/NIR imagers for ocean colour + veg.
- Constellation of high-resolution VIS/IR imagers for land surface imaging
- Constellation for radio occultation
- Constellation for altimetry: 2 in sun-synch orbits and 1 high-precision ref.
- Constellation of LEO satellites for precipitation measurements: combined use
 of active instrument in low-inclination orbit and passive microwave
 instruments in several high-inclination orbits
- Constellation of sensors for Earth radiation budget: including at least 1 broadband multi-angle viewing radiometer in LEO, and 1 total solar irradiance sensor, together with auxiliary LEO measurements and geo sensors
- Constellation of instruments/missions to address atmospheric composition

Vision for the space-based GOS in 2025: Summary (3)

Several R&D satellites and operational pathfinders including:

- LEO with Doppler wind lidar
- LEO Low-frequency MW radiometer addressing salinity and soil moisture
- GEO microwave

Considered as optional:

- Satellites in highly elliptical orbit (HEO) ensuring polar region coverage
- Geostationary lightning detection

Improved availability, timeliness, and intercalibration through operational cooperation among agencies.

Developing a new Vision – who's involved?

WMO

- Expert Team on Evolution of the GOS (requirements for space+surface obs)
- ET on Satellite Utilization & Products
- ET on Satellite Systems
- ET on Automatic Weather Stations

 Implementation/Coordination Team on Integrated Observing Systems (ICT-IOS)

Commission for Basic Systems (CBS)

- Optimization workshops
- CGMS
- CEOS
- Other stakeholders

Developing a new Vision – schedule

July 2007 – Dec 2008
Discussion of draft within WMO Expert Teams and with other stakeholders

*** COMMENTS WELCOME! ***

Early 2009 Adoption by WMO Commission for Basic Systems

Thank you for your attention

Ocean surface topography

The community (including CEOS Ocean Surface Topography Constellation) has recommended 2 components:

- One high-precision reference altimeter system with orbit and coverage avoiding tidal aliasing (e.g. Jason)
- Two complementary altimetry systems on higher inclination orbits to maximize global coverage (e.g. GFO, ENVISAT or Sentinel-3)

covering from oceanic mesoscale to basin-wide scale and addressing ocean weather and climate applications

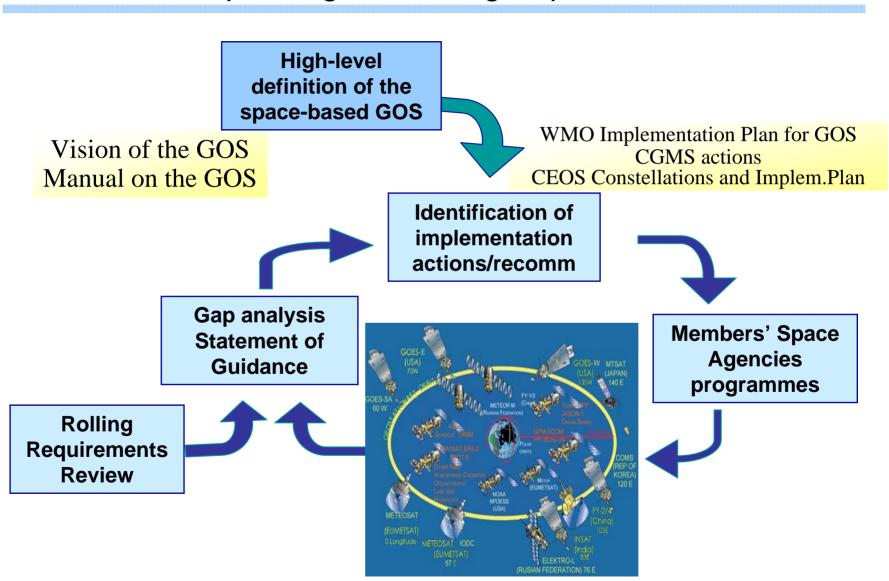
Ocean surface wind vector

- 2 scatterometers
- 2 full-polarization MW imagers
- other MWI (dual polarization) contribute to additional wind speed data

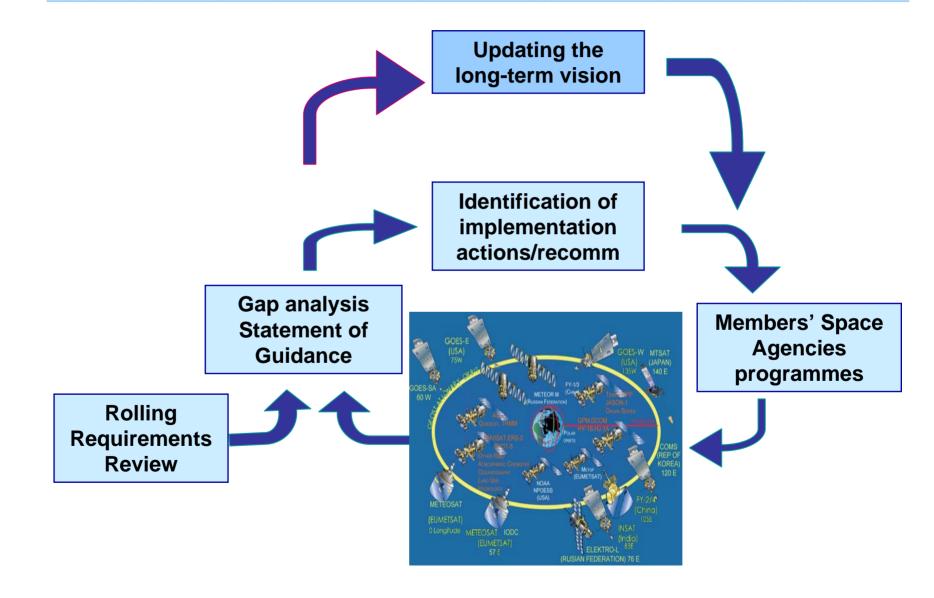
New missions required on long-term basis for GCOS ECVs

- Global precipitation measurement (GPM concept)
- Earth Radiation Budget (to be refined)
 - TSI and TOA upcoming SW-LW
 - Contextual parameters (cloud, aerosols, WV)
 - Geostationary multi-spectral imagery for diurnal cycle
- Atmospheric composition constellation (to be refined)
 - for O3, GHG, aerosols, and air quality in lower troposphere
- Specific imaging missions for ocean colour and vegetation

Vision of the GOS to 2025 Forward looking but affordable


- Serving broader objectives step towards WIGOS
- Enhanced and diversified capabilities
- More commitments to long-term continuity
- Requires more resources
- > Possible with wider community of GOS contributors
- > Need enhanced cooperation to optimize global effort
- > Ensuring data exchange and consistent data quality

References


- User Requirements from CEOS-WMO database
 http://www.wmo.int/pages/prog/sat/Databases.html
- Statements of Guidance
 <u>http://www.wmo.int/pages/prog/sat/Refdocuments.html</u>
- Gap Analysis presented at the WMO Workshop on Re-design and Optimization of the GOS and at CGMS-XXXV http://www.wmo.int/pages/prog/sat/documents/CGMS-35WMO-WP-05.pdf

Evolution of the GOS

Responding to evolving requirements

Evolution of the GOS

e.g. - observation requirements for global NWP

- 3D wind
- 3D temperature
- 3D humidity
- surface pressure
- surface variables:
 - sea surface temperature
 - ice/snow cover, snow depth(water equivalent)
 - · vegetation, soil moisture
- cloud and precipitation
- other variables that modify radiation or act as tracers:
 - ozone, aerosols

e.g. – gap analysis for global NWP

SUMMARY:

- "... the critical atmospheric variables not adequately measured by current or planned systems are:
- ✓ wind profiles at all levels
- ✓ temperature profiles of adequate vertical resolution in cloudy areas
- ✓ precipitation
- ✓ soil moisture
- √ surface pressure
- ✓ snow equivalent water content "

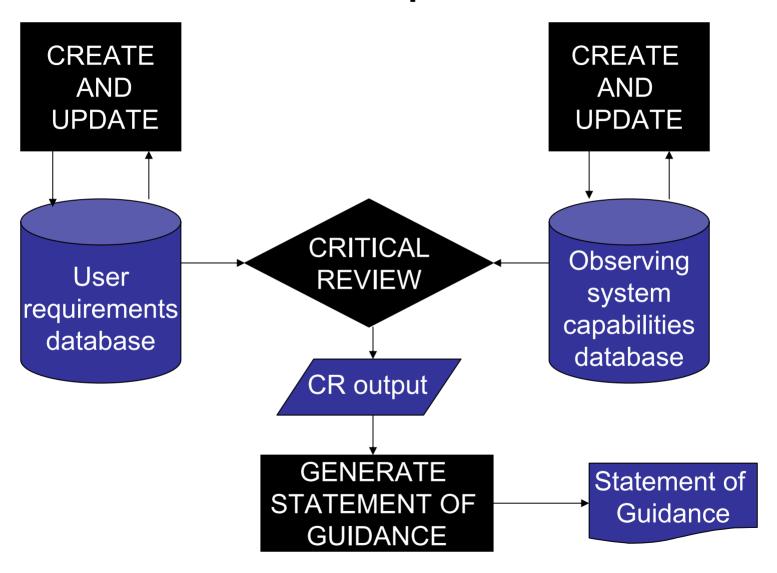
Evolution of the GOS operational geostationary component

- at least 6 spacecraft
 - separated by ≤ 60 deg longitude for a "global" coverage
- VIS/IR multi-purpose imagery
- IR hyperspectral sounding
- contribution to Earth Radiation Budget monitoring
 - TBD, complement to LEO
- contribution to Atmospheric Chemistry
 - TBD, complement to LEO
- optional: lightning detection
 - complement to ground-based systems

Low Earth Orbit (Polar Sun-Synchronous Orbit (SSO) or other LEO)	
VIS/IR imagery, MW sounding	SSO (13:30; 17:30; 21:30)
IR hyperspectral sounding	
Radio-occultation sounding	Clusters, ≠ inclinations, mainly non-SSO
Ocean altimetry	Precise non-SSO (Jason follow-on)
(2 components)	SSO, 2 well separated orbital planes
Sea surface wind (2 scat+2 MWI)	SSO
Global Precipitation (radar)	65° inclination
Global Precipitation (passive MW)	Constellation with various orbits
Earth Radiation Budget	Mainly SSO + complement on GEO
Atmospheric composition	LEO and GEO (TBD)
Specific imagery	SSO
Geostationary and Highly Elliptical Orbit	
VIS/IR imagery (>16 ch), IR hyperspectral sounding Geo (x 6)	
Lightning detection (option)	Geo
High-latitude observation F	irst for demo) HEO

- User requirements have been assessed and compared with the capabilities of present/planned observing systems
- ...leading to a gap analysis for "application areas" within WMO programmes:
 - synoptic meteorology
 - global NWP
 - regional NWP
 - nowcasting
 - seasonal and inter-annual forecasting
 - aeronautical meteorology
 - · atmospheric chemistry
 - JCOMM ocean applications
 - agrometeorology
 - hydrology
 - climate monitoring (GCOS Adequacy Report and Implementation Plan)

WMO Rolling Review of Requirements (RRR) process


- RRR addresses the question:
 - how well do present/planned/proposed observing systems meet user requirements (URs) for each "application area" within WMO programmes?

Aims of RRR

- to inform WMO members how well their requirements for observations are or will be met
- to provide material to aid dialogue of WMO and its members with "observing system providers" (member states and space agencies)

RRR is intended to provide general guidance - it

The RRR process

Global Observing System

Globally Coordinated

Space and Surface-based

Increasing role of space

Evolution of the GOS

(7) Cross-cutting aspects

- Improved calibration
- Improved data access and data timeliness
- Consider the possibility of targeted observations
- Sustainability through transition of a number of R&D missions to operational status