Met Office CCMWF

Characterisation of NWP Model Biases and Uncertainties in the MW and IR Spectral Domains

Part 1: InfraRed

Fabien Carminati, Met Office Stefano Migliorini, Met Office Bruce Ingleby, ECMWF Heather Lawrence, ECMWF

Motivation

What are the biases and uncertainties in NWP temperature and humidity fields when mapped to radiance space?

Northern Latitudes BAR; NYA; SOD ~7000 matchups 2011-2017

Mid-Latitudes

SGP; CAB; LIN; TAT ~15000 matchups 2011-2017

Disclaimer

Simulated radiosonde-based Brightness Temperature vs Simulated NWP-based Brightness Temperature

No Satellite Data

Met Office - Mid-Latitudes

 $\delta y = NWP - GRUAN$

Biases Time Series

Met Office – Mid-Latitudes

ECMWF – Mid-Latitudes

Uncertainties

The total uncertainty of the difference δy is expressed as the covariance matrix $S_{\delta y}$:

 $S_{\delta y} \cong HRH^T + HWBW^TH^T + HS_{int}H^T$

Uncertainties

The total uncertainty of the difference δy is expressed as the covariance matrix $S_{\delta y}$:

$$S_{\delta y} \cong HRH^T + HWBW^TH^T + HS_{int}H^T$$

$$= HR_{temp}H^T + HR_qH^T + HR_PH^T + h\sigma_{surf}^2h^T$$

Diagonal matrices of GRUAN uncertainties

Uncertainties

The total uncertainty of the difference δy is expressed as the covariance matrix $S_{\delta y}$:

$$S_{\delta y} \cong HRH^T + HWBW^TH^T + HS_{int}H^T$$

 $= HWB_{temp}W^{T}H^{T} + HWB_{q}W^{T}H^{T} + h\sigma_{surf}^{2}h$

Full model covariance matrices

Uncertainties

The total uncertainty of the difference δy is expressed as the covariance matrix $S_{\delta y}$:

$$S_{\delta y} \cong HRH^T + HWBW^TH^T + HS_{int}H^T$$

function of *B* and *W* (interpolation matrix) see paper in ref.

Uncertainties

Total Uncertainty

– — — NWP contribution to total U

..... GRUAN contribution to total U

Assessment

The statistical significance of δy is assessed by testing the following:

$$\left| S_{\delta y}^{-1/2} \cdot \delta y \right| < 2$$

NWP and GRUAN brightness temperatures satisfying this test are in agreement with a confidence interval of 95.5%.

$$|m_1 - m_2| < k \sqrt{u_1^2 + u_2^2}$$

Biases Time Series

Met Office – Mid-Latitudes

ECMWF – Mid-Latitudes

Summary tables

Met Office – Mid-Latitudes

Wavenumber	Instrument	Matchups	Q1	Median	Q3	Mean	StDv	Kurtosis	Skew	Uncertainty	Success rate (%)
657.50	IASI (51)	15513	0.03	0.17	0.31	0.17	0.22	2.04	-0.18	0.09	49.47
696.00	IASI (205)	14983	0.01	0.11	0.20	0.11	0.16	1.32	-0.04	0.08	53.40
697.75	IASI (212)	14888	-0.00	0.09	0.19	0.09	0.15	1.44	-0.06	0.08	56.71
706.25	IASI (246)	15001	-0.07	0.01	0.10	0.02	0.14	2.00	-0.02	0.08	54.33
731.00	IASI (345)	14363	-0.47	-0.09	0.27	-0.11	0.67	5.42	-0.29	1.27	85.50
731.50	IASI (347)	14925	-0.12	-0.05	0.09	-0.01	0.19	4.27	-0.08	0.20	97.47
1361.9	HIRS (11)	14334	-0.78	-0.15	0.43	-0.20	1.08	4.97	-0.48	2.27	96.35
1367.00	IASI (2889)	14403	-0.79	-0.09	0.54	-0.15	1.24	4.67	-0.27	1.91	81.48
1402.00	IASI (3029)	14403	-0.96	-0.13	0.64	-0.20	1.46	4.63	-0.40	2.97	64.53
1408.00	IASI (3053)	14419	-0.88	-0.11	0.61	-0.17	1.37	4.44	-0.33	2.49	64.67
1540.25	IASI (3582)	9901	-0.99	-0.36	0.09	-0.51	0.91	3.03	-0.95	3.21	73.23
1550.25	CH3 (991)	11973	-1.44	-0.48	0.30	-0.00	1.00	8.00	-1.22	7.21	00.40

Potential outcomes

- Better understanding of geographical & temporal distribution of model biases.
- More robust NWP-based satellite assessment.
- Refine model covariance uncertainties.
- Improve bias corrections.

Caveat

It ignores the (unknown) uncertainty due to the scale mismatch between coarse model resolution and fine radiosonde measurements. It is expected to be more significant for humidity than temperature as it varies at scales generally smaller than global model resolutions.

Characterisation of NWP Model Biases and Uncertainties in the MW and IR Spectral Domains

Part 2: Microwave

Poster 11p.01

References

- **Carminati**, F., Migliorini, S., Ingleby, B., Bell, W., Lawrence, H., Newman, S., Hocking, J., and Smith, A.: Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation, Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, 2019.
- **Dirksen**, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., andVömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas.Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014.
- **Immler**, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P.W., and Vömel, H.: Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products, Atmos. Meas. Tech., 3, 1217–1231, <u>https://doi.org/10.5194/amt-3-1217-2010</u>, 2010.

Questions ?

For more information please contact

www.metoffice.gov.uk

fabien.carminati@metoffice.gov.uk

+44 (0) 3301 350824

www.metoffice.gov.uk