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Background



Background

GNSS Radio Occultation (RO)

• GNSS signals and LEO receivers measure 
atmospheric bending angle 

• Bending Angle  Refractivity WV, T

• High vertical resolution (0.5 – 2km)†
• Low horizontal resolution (~300 km)†

• Temperature has high accuracy in UTLS 
(*0.3 K stochastic error btwn 30-250 hPa)

• Technology struggles to retrieve in BL

*ROMSAF VS 33 Report:  http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf
†Kursinski et al., (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System, JGR, 102. 

https://www.nesdis.noaa.gov/OPPA/cosmic2.php

http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf
https://www.nesdis.noaa.gov/OPPA/cosmic2.php


• Feltz M., R. Knuteson, and H. Revercomb (2017), Assessment of COSMIC radio 
occultation and AIRS hyperspectral IR sounder temperature products in the stratosphere 
using observed radiances, JGR Atmos., 122, doi: 10.1002/2017JD026704. 

• EUMETSAT ROM SAF Visiting Scientist Project Report:  Assessment of Differences 
Between ROM SAF GRAS Derived Brightness Temperatures and Hyperspectral Infrared 
Brightness Temperature Observations, SAF/ROM/DMI/REP/VS/33, CDOP-2 VS No. 33. 
http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf

Background

Previous Work: 

1]  IR temperature retrieval assessment 
using RO as reference (focus on UTLS): 

• Yunck et al., (2007), Use of Radio Occultation to Evaluate Atmospheric 
Temperature Data from Spaceborne Infrared Sounders, Terr. Atmos. Ocean Sci., 
20, doi: 10.3319/TAO.2007.12.08.01(F3C)

• Divakarla, et al. (2014), The CrIMSS EDR algorithm: Characterization, 
optimization and validation, JGR Atmos., doi: 10.1002/2013JD020438.

• Feltz, et al. (2017), Assessment of NOAA NUCAPS upper air temperature profiles 
using COSMIC GPS radio occultation and ARM radiosondes, JGR Atmos., 122, 
doi: 10.1002/2017JD026504. 

2]  RO temperature assessment using 
IR radiances as reference (via RT):

METOPB GRAS - IASI
DJF Antarctic  

Other studies on RO and hyperspectral IR sounders:  
- Discussed SI traceability of each system to each other,  e.g. Cao et al. SPIE, 2018
- Used RO to assess Radiometric Accuracy of CrIS Radiances, e.g. Lynch et al., EUM Sat. Conf., 2018
- Shown advantages of combining IR sounder & RO in retrievals, e.g. Borbas et al. JGR 2003, JAMC 2008; Ho et al., JTECH, 2007; Lui et al., IEEE, 2015

http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf


Background

Additional Application: 
Infrared Radiance Closure Experiments

• Efforts in 90’s enabled refinements of 
radiosonde humidity calibration & WV 
molecular absorption lines using the AERI 
instrument (Turner et al., 2004) 

• Later work was similarly done using aircraft 
and satellite based hyperspectral IR sounder 
measurements as a validation reference for 
other atmospheric state and model 
parameters (e.g. Strow et al., 2006;  Tobin et 
al., 2006; Masiello et al., 2011, …)

IR Radiance  Observations
AERI   IASI, AIRS, CrIS
(CrIS has well documented 

uncertainties) 

Atmospheric State
Radiosonde   RO 
(RO has more samples, 

reaches higher into atm.)

Radiative Transfer Model
old LBLRTM   new LBLRTM
(LBLRTM v12.8 contains updated 

continuum, HITRAN)

IR Radiance 
Calculations 

Strow, L. L., (2006), Validation of the Atmospheric Infrared Sounder radiative transfer algorithm, J. Geophys. Res., 111, D09S06, doi:10.1029/2005JD006146.
Tobin, D. C., (2006), Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor 

retrieval validation, J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.
Turner, D.D., (2004), The QME AERI LBLRTM:  A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance, J. Atmos. Sci., 61, 2657–

2675, https://doi.org/10.1175/JAS3300.1
Masiello, G. et al. (2011), The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere, Atmos. Chem. Phys., 

11, doi:10.5194/acp-11-1009-2011.

https://doi.org/10.1029/2005JD006146
https://doi.org/10.1029/2005JD006103
https://journals.ametsoc.org/doi/abs/10.1175/JAS3300.1
https://doi.org/10.1175/JAS3300.1


Methods



• Use profile-to-profile matchup method
• Accounts for the unique RO profile geometry and horizontal resolution
• <1 hr time criterion

• Distribution and number of matchups depends on orbital mechanics 
• Method applicable to data from different platforms/processing centers

FOR MORE DETAILS:   Feltz, M. et al. (2014), A methodology for the validation of temperature profiles from hyperspectral infrared sounders 
using GPS radio occultation: Experience with AIRS and COSMIC, JGR, doi:10.1002/ 2013JD020853.

Methods:  Matchup Scheme

Example Matchup DistributionIndividual Matchup Case

IR sounder raypath FOVs
RO profile
RO ”horizontal” resolution



• Optimal Spectral Sampling Radiative Transfer Fast Model
• Atmospheric and Environmental Research (AER)
• Model Input: ECMWF Reanalysis, NOAA ESRL CarbonTracker and heavy molecules, 

NASA CAMEL Land HSR Emissivity V002 or Nick Nalli’s Ocean Emissivity module

Methods:  Radiative Transfer

OSS Reference:   Moncet, et al., Infrared Radiance Modeling by Optimal Spectral Sampling. Journal of the Atmospheric Sciences, Vol. 65, 
2008, https://doi.org/10.1175/2008JAS2711.1

LBLRTM Reference:   Clough, et al., Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor. Journal of 
Geophysical Reviews, 97, 1992, https://doi.org/10.1029/92JD01419

HITRAN Reference:  Rothman, et al., The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative 
Transfer, 130, 4-50, 2013, https://doi.org/10.1016/j.jqsrt.2013.07.002

https://doi.org/10.1175/2008JAS2711.1
https://doi.org/10.1029/92JD01419
https://doi.org/10.1016/j.jqsrt.2013.07.002


Uncertainties

1. Observations
2. Atmospheric State 
3. Radiative Transfer Model



*Tobin D. et. al., Suomi-NPP CrIS radiometric 
calibration uncertainty, JGR: Atmos., 118, 2013. 
https://doi.org/10.1002/jgrd.50809

-- Data provided by Joe Taylor of UW–Madison, SSEC --

• CrIS measurement uncertainty, for 
large data ensembles, is dominated by 
radiometric calibration 

• Estimates published for SNPP 
and created for NOAA-20

(Tobin et al., 2013)*

• Single sample error/noise estimated 
as the standard deviation of the ICT 
views

• Reprocessed CrIS radiance products 
available from NASA GES DISC 

• Noise estimates on each granule
• Version 3 will make radiometric 

uncertainty estimates available--
provided as software and inputs

Uncertainties:  CrIS Radiance Observations

NPP ARCTIC SCENE

https://disc.gsfc.nasa.gov/datasets/SNDRJ1CrISL1B_V2/summary/

NPP ARCTIC SCENE

https://doi.org/10.1002/jgrd.50809
https://disc.gsfc.nasa.gov/datasets/SNDRJ1CrISL1B_V2/summary/


• Atmospheric state uncertainty 
estimation: 

1] Calculate sensitivities
2] Scale sensitivities to error 
estimates:  

 T:  0.5 K
 WV:  10 % 
 CO2:  4 ppm
 O3:  10 %
 CH4:  10 % 
 N2O:  10 %
 Skin T:  1 K 
 Sfc Emis:  CAMEL V002

3] Combine scaled sensitivities via RSS

Uncertainties:  Atmospheric State



Uncertainties:  Atmospheric State

• 15 μm more sensitive to typical T errors 
than typical CO2 errors

• Uncertainty in blue ignores T error and is 
dominated by contribution from 4 ppm 
CO2 error  is ~0.05 K for < 700 cm-1

• 6 μm sensitive to both T & WV –
ambiguity implies we can only validate 
WV to the degree we know T 

• Uncertainty in red ignores WV error 
and is primarily due to T  is ~0.5K



Uncertainties:  Radiative Transfer Model

• HITRAN database provides “uncertainty codes” which describe uncertainty in the molecular 
line position and air pressure-induced line shift parameters, as well as the line intensity and 
broadening parameters  (Rothman et al., 2005)

• 700 cm-1 region absorption features have very small uncertainties (<1% on coefficients) 
• 1600 cm-1 region known to a lesser degree 

https://hitran.org/docs/uncertainties/

https://hitran.org/docs/uncertainties/


Case Study



NORTH SLOPE OF ALASKA ARM SITE
AUGUST 14TH, 2014

UCAR COSMIC data obtained from the COSMIC Data Analysis and Archive Center: https://cdaac-www.cosmic.ucar.edu/

Case Study

https://cdaac-www.cosmic.ucar.edu/


Case Study

CALC-OBS COMBINED 3𝜎𝜎 UNCERTAINTY

• Combined systematic 
between 0.13-0.18 K 
at < 700cm-1

• Combined stochastic 
under 0.5 K between  
680-740 cm-1

• Combined 
systematic  ~0.5 K

• Combined stochastic 
under 1-2 K 

NORTH SLOPE OF ALASKA ARM SITE
AUGUST 14TH, 2014



Case Study

CALC-OBS DIFFERENCE

NORTH SLOPE OF ALASKA ARM SITE
AUGUST 14TH, 2014

• Spectral regions exist 
where the calculations do 
and do not agree with the 
observations

• Suggests the uncertainties 
are small enough for us to 
be able to learn something 
from these comparisons

ECMWF Calc. – Obs.
ROwet Calc. – Obs.
3σ Stochastic Unc. 



• Minimum detectable upper-trop/lower-strat T 
• bias is ~0.2 K
• single sample error is ~0.45 K
(Based off of 4ppm CO2 error & CrIS obs unc)

• Minimum detectable tropospheric WV 
• bias is ~6% 
• single sample error is ~10%
(Based off 0.5 K T error & CrIS obs unc)

Case Study:  Broad Conclusions

Question:  To what accuracy can we use the IR sounder radiances and radiative transfer 
to validate the atmospheric state temperature and water vapor (e.g. from RO)??



Concluding Remarks



• Applications of RO and hyperspectral IR sounder comparisons: 
- IR T retrieval validation 
- RO T product validation 
- Radiative transfer closure experiments

• A radiance closure experiment using CrIS radiances as a validation reference showed: 
• The single sample minimum detectable 

• stratospheric T error is ~0.45 K
• tropospheric WV error is ~10% 

• The ensemble mean minimum detectable 
• stratospheric T bias is ~0.2 K, 
• tropospheric WV bias is ~6% 

• Future work:
• COSMIC-2 operational wet profiles assessment using coincident 

observations from the operational NOAA-20 CrIS

Concluding Remarks



michelle.feltz@ssec.wisc.edu





• Taken from Kursinski et al., Observing Earth’s atmosphere with radio occultation 
measurements using the Global Positioning System, JGR, 102, 1997.

(https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD01569)

RO Vertical Resolution 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD01569


• Figure from EUMETSAT ROM SAF Visiting Scientist Report # 33:
http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf

RO Temperature Uncertainties 

http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf


• Figure from EUMETSAT ROM SAF Visiting Scientist Report # 33:
http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf

RO Temperature Uncertainties 

http://www.romsaf.org/Publications/reports/romsaf_vs33_rep_v10.pdf
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