

□ We adopt NWP SAF cloud detecting algorithm (McNally and

(C) Met Office (30 scan positions)

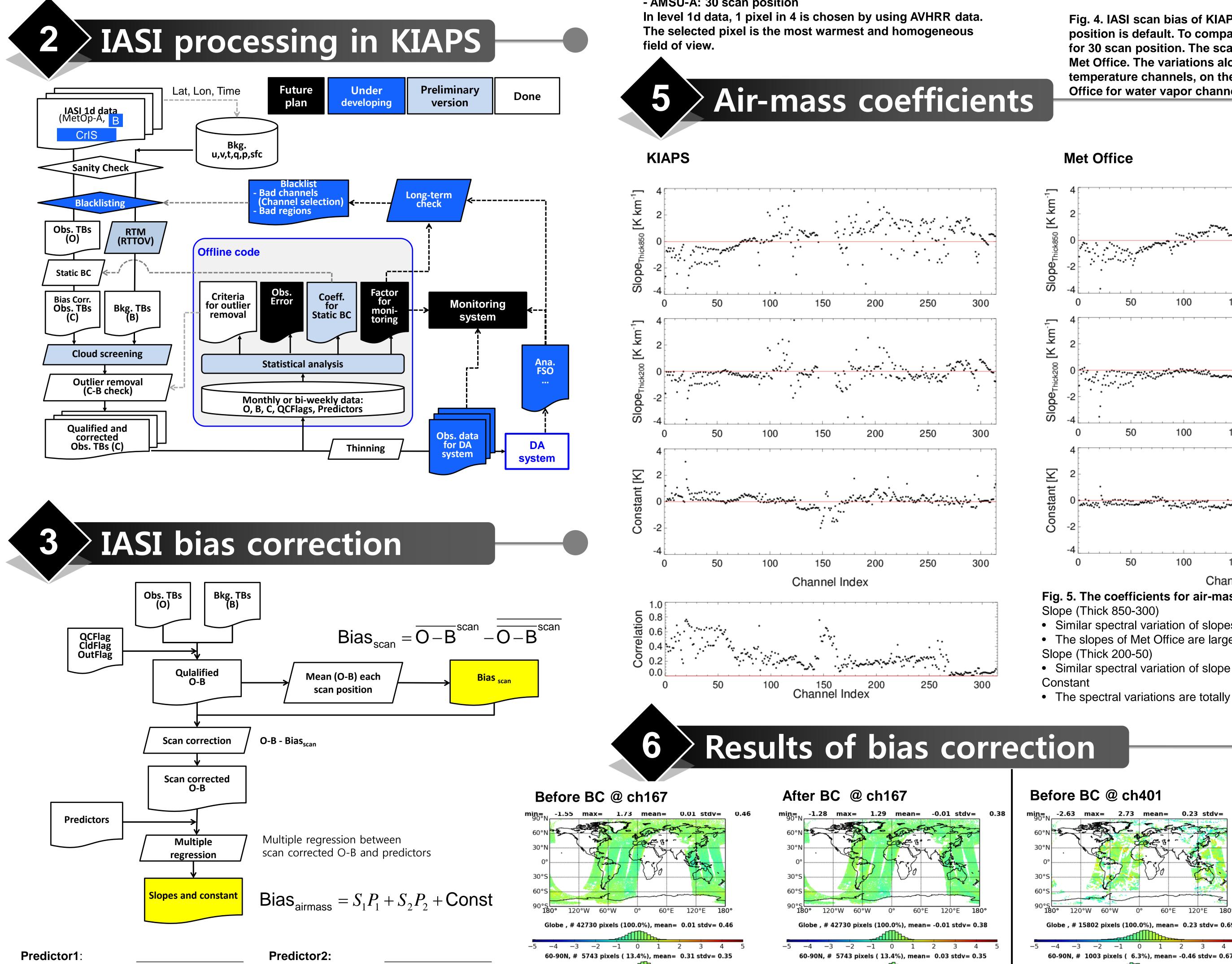
Watts, 2003) to remove cloud contamination in observed TB for each IASI channel.

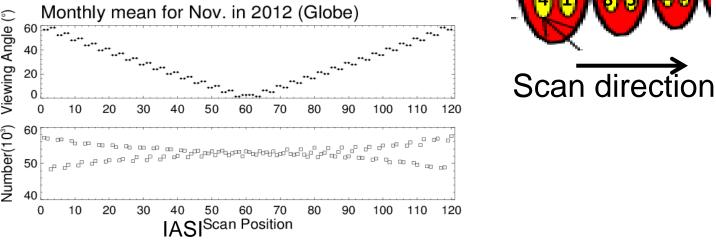
□ And also we remove bias of observed TB for each IASI channel and scan position. We assumed that the bias of background TB is negligible compared to that of observed TB.

50

100

150


Channel Index


200

250

300

- VAR: 138 channels

Fig. 3. IASI scan position

- IASI: 120 scan position = (4×30)

- AMSU-A: 30 scan position

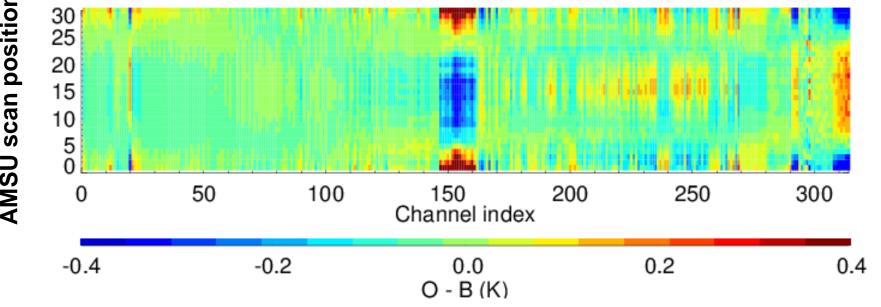
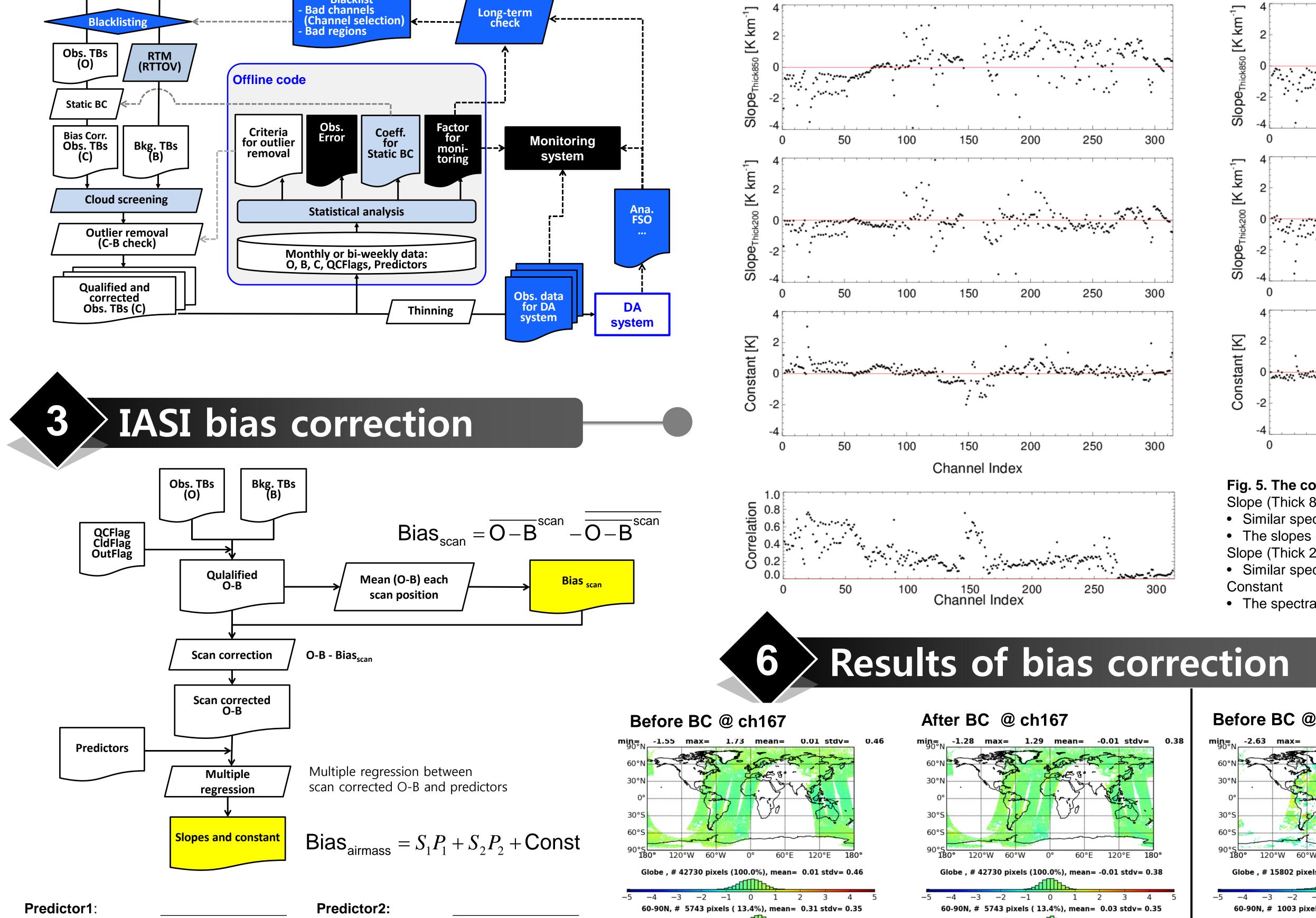



Fig. 4. IASI scan bias of KIAPS (a, b) and Met Office (c). In KIAPS, 120 scan position is default. To compare with Met Office, the scan biases are calculated for 30 scan position. The scan biases are totally different between KIAPS and Met Office. The variations along with scan positions are larger in KIAPS for temperature channels, on the other hands the variations are larger in Met Office for water vapor channels.

Met Office

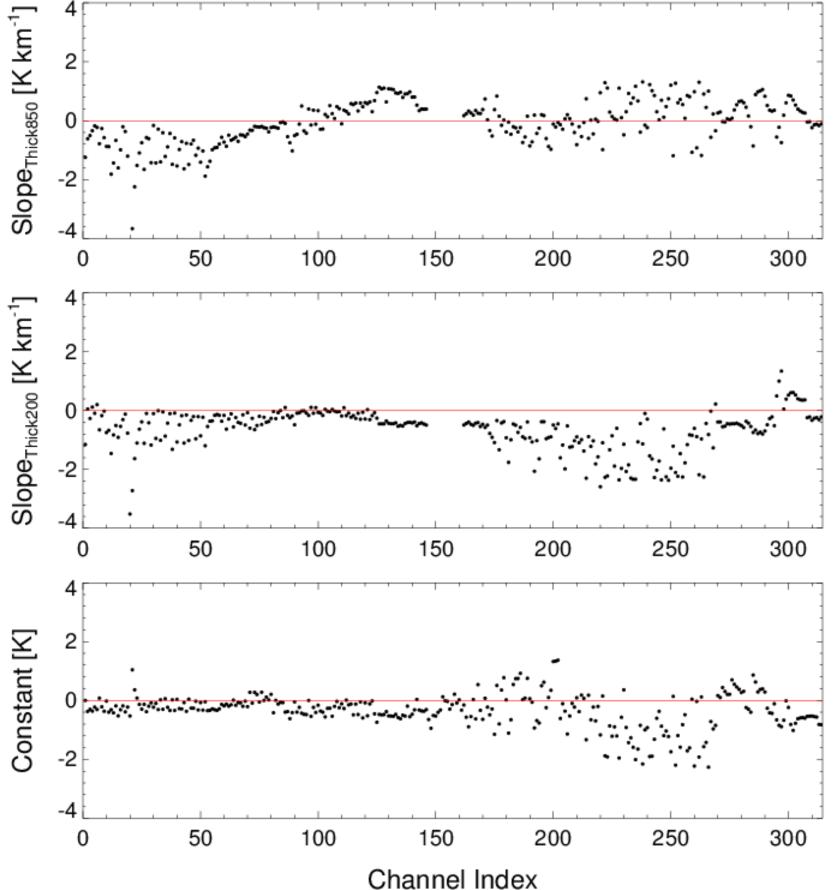
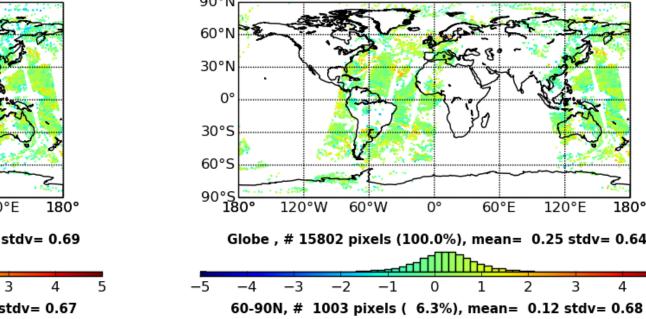


Fig. 5. The coefficients for air-mass correction of KIAPS and Met Office. Slope (Thick 850-300)

• Similar spectral variation of slopes at high-peaking temperature channels


• The slopes of Met Office are larger at low-peaking temperature channels Slope (Thick 200-50)

• Similar spectral variation of slope for all temperature channels

• The spectral variations are totally different in water vapor channels

After BC @ ch401 Before BC @ ch401 2.73 mean= 0.23 stdv= 2.59 mean= 0.25 stdv= 0.64 0.69

Globe , # 15802 pixels (100.0%), mean= 0.23 stdv= 0.69

$\frac{\text{Freductor 1.}}{\text{Thickness}}_{(850-300 \text{ hPa})} - \frac{\text{Thickness}}{(850-300 \text{ hPa})} - \frac{\text{Thickness}}{(850-300 \text{ hPa})} - \frac{\text{Thickness}}{(200-50 \text{ hPa})} - \frac{\text{Thickness}}{(200-50 \text{ hPa})} - \frac{\text{Thickness}}{(200-50 \text{ hPa})} - 1000000000000000000000000000000000000$			-5 -4 -3 -2 -1 0 1 2 3 4 5 $30-60N, # 6890 pixels (16.1%), mean= 0.09 stdv= 0.38$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$ $0-30N, # 9684 pixels (22.7%), mean= -0.23 stdv= 0.41$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$ $305-0, # 9176 pixels (21.5%), mean= -0.24 stdv= 0.42$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$ $305-0, # 9176 pixels (21.5%), mean= -0.24 stdv= 0.42$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$ $60-30S, # 6374 pixels (14.9%), mean= 0.06 stdv= 0.37$			-5 -4 -3 -2 -1 0 1 2 3 4 5 $30-60N, # 6890 pixels (16.1%), mean= 0.02 stdv= 0.35$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$ $0-30N, # 9684 pixels (22.7%), mean= -0.04 stdv= 0.39$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$ $30S-0, # 9176 pixels (21.5%), mean= -0.05 stdv= 0.40$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$ $60-30S, # 6374 pixels (14.9%), mean= 0.00 stdv= 0.35$			5 -5	-5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 0 1 2 3 4 30S-0, # 4565 pixels (33.0%), mean= 0.34 stdv= 0.44 stdv=			4 5 -5 -4 -3 -2 -1 0 1 2 3 4 30-60N, # 2431 pixels (15.4%), mean= 0.34 stdv= 0.69 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 0-30N, # 5221 pixels (33.0%), mean= 0.23 stdv= 0.61 -5 -4 -3 -2 -1 0 1 2 3 4 305-0, # 4565 pixels (28.9%), mean= 0.20 stdv= 0.63 -5 -4 -3 -2 -1 0 1 2 3 4				
Globe , # 76691 pixels (94.7%), mean= -0.01 stdv= 0.36 Globe , # 81000 pixels (100.0%), mean= 0.02 stdv= 0.32		–5 –4 90-6	-5 -4 -3 -2 -1 0 1 2 3 4 5 90-60S, # 4863 pixels (11.4%), mean= 0.39 stdv= 0.38			-5 -4 -3 -2 -1 0 1 2 3 4 5 90-60S, # 4863 pixels (11.4%), mean= 0.07 stdv= 0.40			5 –5	-5 -4 -3 -2 -1 0 1 2 3 90-60S, # 459 pixels (2.9%), mean= -0.57 stdv= 0			5 , 5	-5 -4 -3 90-60S, #	-2 -1 0 1 2 3 4 459 pixels (2.9%), mean= 0.07 stdv= 0.54		
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0	-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0	-5 -4 - 5	-3 -2 -1	0 1 2 3 4 Kelvin 1 3	4 5 5	-5 -4 -3 5 2	-2 -1 0	1 2 3 4 n 1 2	5 _5	5 -4 -3 - 3		2 3 4 2	– 5 5	-5 -4 -3 -5 -3		1 2 3 1 3	4
Fig. 1. The predictors for air-mass correct	tion.	-5	-3 -1	О – В (К)	5	-0 -0	C –	B (K)		J -J	0 – B (K	.) .)	5	-0 -0	С – В	, (K)	~
IASI channels passed to the OPS and V. 300	Fig. 6. O-B distribution before and after bias correction at ch 167 an - channel 167 (686.5 cm ⁻¹ , peak @ ~ 70 hPa, 18.8 km, Index: 49) - channel 401 (745.0 cm ⁻¹ , peak @ ~640 hPa, 4.0 km, Index: 113) d to the - The irregular biases in each latitude bins are reduced after bias co								Background	d	UM v physics	APS /er 7.9 s PS28, F 18.5	Met Office UM ver 8.2				
280 -	OPS and VAR in UM (Westo	n, 2011,									Data process	ing	KC	OPS	OPS	3	
	original IASI: total 8461 cha	nnolo									RTTOV versi	on		ver. 7 ver. 10.2	OPS: ve	r. 9.3	
Water Vapour channels KIAPS: 314 channels are (level1d data from KMA)											Day/Night		Day 8	& Night	Day & N	light	
				Sum	mar	У.					Region	(ace type ean, Sealce)	All surfac (Land, Ocear	••	
	- 300 channels (Collarad, 20	007)									Time window	w	6 hour (·	+3h, -3h)	6 hour (+3	h, -3h)	
	- 14 channels (CNES monit	oring)		ramework for I	ASI pr	ocessing ii	n KIAPS I	s established	1.		Thinning		Not thin	ned data	Not thinne	d data	
220 Temperature Sounding channels	 * Channel selection is our future work UM OPS: 183 channels VAR: 138 channels 		coeffic biases	ias correction cients of KIAP and constan V version and	PS are onts are	compared some diffe	with Met (erent. The	Office values. e differences	. The ai	ir-mass (correction slo	opes ar	re simila	ar in two o	organizatio	on, but s	scan

The calculated coefficients are apply to the same time period and then the irregular biases in each latitude bins are reduced.

International TOVS Study Conferences 19 Jeju Island, South Korea, 26 March – 1 April 2014