Status reports of JMA & JAXA

K. Okamoto¹, Y. Tahara¹, Y. Takeuchi¹, N. Uekiyo¹, T. Nio² and T. Kimura²

okamoto@naps.kishou.go.jp

1: JMA, 2: JAXA

SRFs of MTSAT2/IMAGER and MTSAT-1R/JAMI

New Products and Applications in 2005-2006

□ for NWP

- Hourly Atmospheric Motion Vectors (AMV)
- Clear Sky Radiance (CSR)
- for Japanese Reanalysis Project (JRA-25)
 AMVs from GMS 3-5 with latest algorithms
- Applications for environment monitoring
 Dust detection product
- Asia-Pacific Regional ATOVS Retransmission Service (AP-RARS)

Tentative schedule of MTSAT-1R/-2 and follow-on satellite

- □ Launch in 2013 hopefully, by 2015 at the latest
- Carry SEVIRI-like Imager
 - (Also Sounder)
- □ JMA users' requirement
 - high resolution, frequent observation, rapid scan
 - Climate and NWP application, particularly
- Problems ...
 - High data rate
 - Various product development

Current Operation Status

TRMM ('97.11-) almost 9 years old

- Post-Operations Phase
- Operation has been extended
- tropical cyclone data base was built by using TRMM/PR, TMI, VIRS, Aqua/AMSR-E
 - http://www.eorc.jaxa.jp
- □ Aqua/AMSR-E ('02.5-)
 - Post-Operations Phase
- **ALOS** ('06.1-)
 - Initial CAL/VAL Phase
 - 3 instruments
 - PALSAR : Phased Array type L-band Synthetic Aperture Radar
 - PRISM : Panchromatic Remote-sensing Instrument for Stereo Mapping
 - AVNIR-2 : Advanced Visible and Near Infrared Radiometer type 2

JAXA's future program

- **GOSAT** (Aug. 2008) Greenhouse gasses Observing SATellite
 - Observe greenhouse effect gasses globally
- **GPM** (2013) Global Precipitation Measurement
 - Observe global precipitation every 3 hours
 - Core satellite will carry DPR + GMI

□ GCOM-W/-C (2010/2011) Global Climate Observation Mission

- GCOM-W carries a AMSRE-like MWR (AMSR2)
 - □ observe water-energy cycle.
- GCOM-C carries a high spatial resolution imager (SGLI)
 - observe surface and atmospheric variables related to carbon cycle and radiation budget
 - 3 satellites in series, 5 years (total 13 years)

EarthCARE (2012) Earth Cloud, Aerosol and Radiation Explorer

retrieve vertical profiles of cloud and aerosol, and characteristics of the radiative and micro-physical properties

GOSAT overview

Mission

To observe greenhouse effect gasses globally

TANSO-FTS

(Greenhouse gasses observing Sensor) Atmospheric absorption observation by Fourier Theorem Spectroscopy

Wavelength band1 0.38µm band2 0.67µm band3 0.87µm band4 1.62µm Spectrum resolution 0.2 – 1cm

Designed Life Span: 5years Orbit Plan: Altitude 666km Sun-Synchronous Sub-Recurrent Orbit Orbit Inclination: 98deg. Launch: Aug.2008 by H-IIA (TBD)

TANSO-CAI

(Cloud/Aerosol Sensor) Imager Wavelength band1 0.38µm band2 0.67µm band3 0.87µm band4 1.62µm

GPM: Overlap of satellite operation

□ How to collect 8 MWRs for GPM?

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Sun-synchronous								-		_						
EquatorCrossingLocalTime																
5:30	DMSP F	-13		DMSP F	-17			DMSP F	-19					NPOESS	<u> </u>	
												DMSP F	-20	+	4	
								-								
9:30		DMSP F	-16	1		DMSP F	-18			DMSP F-	-20					
				METOP	A				METOP	B				METOP	Ċ	
														<u> </u>		<u> </u>
13:30		AQUA						GCOM-	W1				GCOM-	<u>N2</u>		<u>BCOM-V</u>
							0									JESS C
			_				9							<u> </u>	<u> </u>	-
Non-Sun synchron	ous															
						Meg	gha Tropi	iques								
										GPM Co	re	 				
								-			NIAO			┪────		
											NAS/	<u>A constel</u> I	lation	 		•
	· · ·								!		6 H	· · · · · ·		<u>.</u>		<u></u>
In order	to ac	nieve	the G	PIVI MI	ssion,	JAXA	nope	es to ki	now m	nore de	etalis d	ot cons	stellati	on car	ndidat	e. –
-Possił	hility of	f FY-3	data	use												
			autu	400.												
-Korea	(KMA	/KAR	l) will p	plan to	have	satelli	ite wit	h micr	owave	e radio	meter	or not	t?			
	° C C	data i	inform	otion	oto											
-INPUE	.33 up	Juale	morm	alion.	elc.											

GCOM-W overview

Targets of GCOM-W/AMSR2 are waterenergy cycle.

GCOM-W AMSR2 characteristics						
Scan	Conical scan microwave radiometer					
Swath width	1450km					
Antenna	2.0m offset parabola antenna					
Digitalization	12bit					
Incident angle	Apporox. 55 degree					
Polarization	Vertical and Horizontal					
Dynamic range	2.7-340K					

AMSR-2 will continue AMSR-E observations (water vapor, cloud liquid water, precipitation, SST, wind speed, sea ice concentration etc.).

If GCOM-W2, W3 has scatterometer,

GCOM-W scatterometer in afternoon orbit will increase time resolution and data coverage in combination with the METOP/ASCAT in morning orbit (to achieve every 6 hours observation).

Band (GHz)	Band width (MHz)	Polari zation	Beam width [deg] (Ground resolution [km])	Sampling interval [km]	
6.925	350		1.8 (35 x 62)		
10.65	100		1.2 (24 x 42)		
18.7	200	V	0.65 (14 x 22)	10	
23.8	400	H	0.75 (15 x 26)		
36.5	1000		0.35 (7 x 12)		
89.0	3000		0.15 (3 x 5)	5	

Targets of GCOM-C/ SGLI is surface and atmospheric variables related to carbon cycle and radiation budget.

SGLI will follow the GLI observations (sea surface temperature, ocean color, aerosols, cloud, vegetation, snow/ ice, and so on).

The new SGLI features, 250m (VN) and 500m (T) channels and <u>two polarization/</u> <u>multi-direction channels</u> (P), will enable to improve land and coastal monitoring and retrieval of aerosol over land.

GCOM-C SGLI characteristics							
Scan	Push-broom electric scan (VN & P) Wisk-broom mechanical scan (SW & T)						
Scan width	1150km cross track (VN & P) 1400km cross track (SW & T)						
Digitalization	12bit						
Polarization	3 polarization angles for P						
Along track direction	+45 deg and -45 deg for P Nadir for VN, SW and T						

Shortwave (SW) & thermal infrared (T) scanning radiometer

Polarization muti-angle radiometer (P)

Visible & near infrared (VN) push-broom radiometer

SGLI channels								
	λ	Â	L _{std}	L _{max}	IFOV			
СН	VN, P, S	SW: nm	VN, P: W	m				
	T: 1	um	T: I					
VN1	380	10	60	210	250			
VN2	412	10	75	250	250			
VN3	443	10	64	400	250			
VN4	490	10	53	120	250			
VN5	530	20	41	350	250			
VN6	565	20	33	90	250			
VN7	670	10	23	62	250			
VN8	670	20	25	210	250			
VN9	763	8	40	350	1000			
VN10	865	20	8	30	250			
VN11	865	20	30	300	250			
P1	670	20	25	250	1000			
P2	865	20	30	300	1000			
SW1	1050	20	57	248	1000			
SW2	1380	20	8	103	1000			
SW3	1640	200	3	50	250			
SW4	2210	50	1.9	20	1000			
T1	10.8	0.7	300	340	500			
T2	12.0	0.7	300	340	500			

EarthCARE overview

To retrieve vertical profiles of cloud and aerosol, and characteristics of the radiative and micro-physical properties so as to determine flux gradients within the atmosphere and fluxes at the Earth's surface, as well as to measure directly the fluxes at the top of the atmosphere and also to clarify the processes involved in aerosol-cloud and cloud-precipitation-convection interactions.

EarthCARE Satellite (ESA) Mass approx. 1300kg Orbit Sun-synchronous Polar (13:30) Instruments Cloud Profiling RADAR (JAXA/NICT) Atmospheric LIDAR ESA) Multi-spectral Imager (ESA) Broadband Radiometer(ESA) Launcher Denepr/PSLV/Vega (TBD) Operation (ESA) 2012 Launch for 2+1year mission

Cloud Profiling RADAR (CPR)

Cloud / light precipitation vertical profiles Convective updraft / ice fall in cloud

Multi-spectral Imager (MSI)

Horizontal structure of cloud and aerosols

7 channels: (0.659.0.865.1.61.2.2.8.8 ,10.8,12.0[µm]) -SNR >500(VNIR),>250(SWIR) @₀=1.0 -NEdT < 0.25K@293K -FOV:0.5kmx0.5km -Swath:150km

Frequency:94.05GHz

VPRF:6000~7200Hz

Peak Power:1.5kW

Reflector Dia.:2.5m

Height:-0.5~20km

Field of Vlew:650m

Doppler :-10~+10m/s

Atmospheric LIDAR (ATLID)

λc:355nm(1ch) Power:78mJ PRF:70Hz 3 channels Resolution(H/V):500/100m -Rayleigh Dynamic range:-36-+20dBZ FOV:80urad

-Mie[Co/Cross-Polar] Height -0.5~30km Resolution(V):100m(Mie) Aerosol vertical profiles Thin cloud vertical profiles

Broadband Radiometer (BBR)

Direction:Nadir, ±55deg 2 channels:

- 0.4~4.0um
- 4.0~50um
- FOV:10kmx10km

SW/LW flux at TOA

JMA

- MTSAT-1R started dissemination of formal image observation data in June 2005. Hourly AMV and CSRs are generated.
- MTSAT2 was successfully launched in Feb.2006, and is in stand-by operation.
- Follow-on satellite will be launched in 2013 2015. Preparatory studies are underway.

JAXA

- TRMM/PR, Aqua/AMSR-E and ALOS are operating well.
- GOSAT is developing for the launch in 2008.
- GPM project is studying the new possibility of MW sounder utilization to achieve the original objective of frequent precipitation observation.
 - *JAXA needs your cooperation!
 - GCOM-W/AMSR2 project will be approved in JAXA soon.