

Devendra Singh

Department of Science and Technology

Technology Bhawan, New Delhi

INDIA

Indian Space Programme for Climate Observations

- Payload and Satellite: Design & Fabrication
- Launch (Design, Fabrication & Launch):

» Polar:

Operational

» Geostationary: Operational

- Retrievals
- Applications with Users

Indian Missions for Weather & Climate Studies: Current & Future

CMV, OLR, Rainfall

(1999/2003)

VHRR, CCD

CMV, OLR, Rainfall Aerosol

INSAT-3D (2007)

> 6-Ch VHRR IR Sounder

SST, CMV, OLR, Rainfall, T, h Profile

OCEANSAT-1/2 (1999/2007)

> MSMR, OCM, Scatterometer

Vector Winds Aerosol MEGHA-TROPIQUES (2008)

MW Imager, WV Sounder, ScaRaB

Climatsat !! (2010)

22

SS Wind, TWV, Rainfall T, h Profile, Radiation Budget

INDIAN NATIONAL SATELLITE (INSAT) FOR METEOROLOGICAL APPLICATIONS

INSAT -1: Geostationary Satellite Series

Satellite	Launch Date	Met. Payload with Wavelength Bands	Major Applications
INSAT-1A	10 April 1982	Very High Resolution Radiometer (VHRR) Visible 0.55-0.75μm IR 10.5 - 12.5μm	 Monitoring cyclones & monsoon CMV Winds OLR Rainfall Estimation
INSAT-1B	8 August 1983	-de-	-do-
INSAT-1C	22 July 1988	-do-	-do-
INSAT-1D	12 June 1990	-do-	-do-

INSAT -2: Geostationary Satellite Series

Satellite	Launch Date	Met. Payload with Wavelength Bands	Major Applications
INSAT-2A	10 July 1992	Very High Resolution Radiometer (VHRR) Bands 0.55-0.75 μm & 10.5 - 12.5 μm	Monitoring cyclones & monsoon CMV Winds
INSAT-2B	23 July 1993	Very High Resolution Radiometer (VHRR) Bands : 0.55-0.75 μm &10.5 - 12.5 μm	OLR Rainfall Estimation Mesoscale features
INSAT-2E	April 1999	VHRR: As above + WV Bands: 5-7.1 μm CCD: Bands: 0.63 - 0.79 μm 0.77 - 0.86 μm	 Flood/intens e precipitation advis ory Snow detection
		1.55-1.70 µm	

Location of INSAT-2E: 83°E

INSAT 2E - CCD

Detectors	Spectral Bands (µm)	Spatial Resolution
Visible (Vis)	0.63-0.68	1 Km
Near Infrared (NIR)	0.77-0.86	1 Km
S W Infrared (SWIR)	1.55-1.7	1 Km

INSAT-3A & Kalpana-1 (2003) (2002)

Location : INSAT 3A : 93.5°E

Kalpana-1: 74°E

Payload : (i) VHRR & CCD camera in INSAT 3A

(ii) VHRR in Kalpana-1

VHRR Bands (µm)

- Visible : 0.55 - 0.75

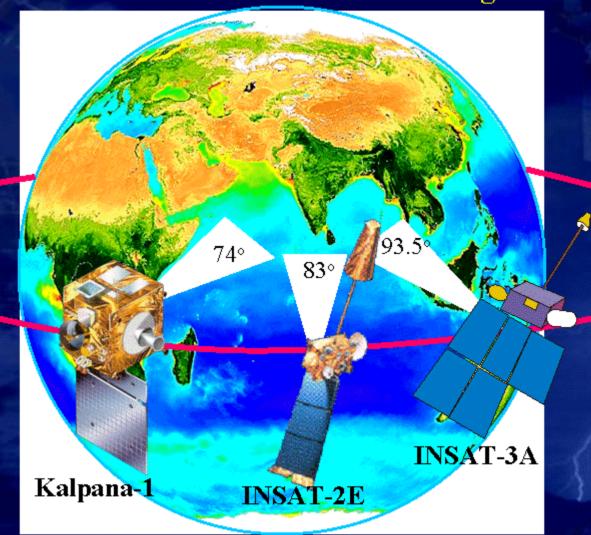
– Water vapour : 5.70 – 7.10

Thermal Infra Red : 10.5 – 12.5

Resolution (km) : 2 X 2 for Visible

8 X 8 for WV & TIR

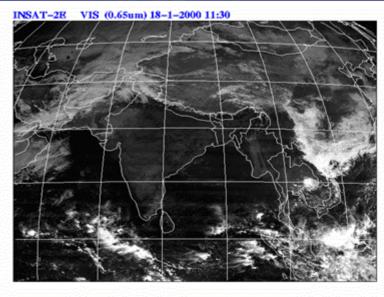
CCD Camera Bands (µm)

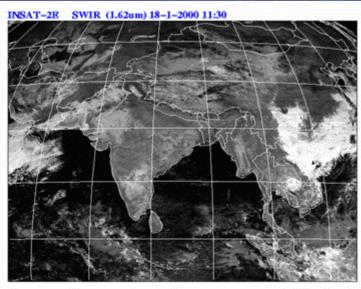

Visible : 0.62 - 0.68

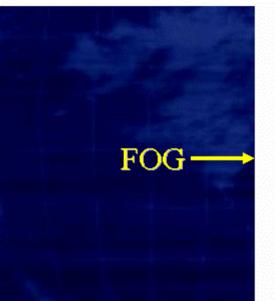
Near Infra Red : 0.77 - 0.86

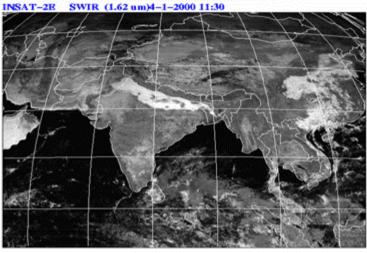
Short Wave Infra Red : 1.55 – 1.69

Resolution (km) : 1 X 1 for all bands

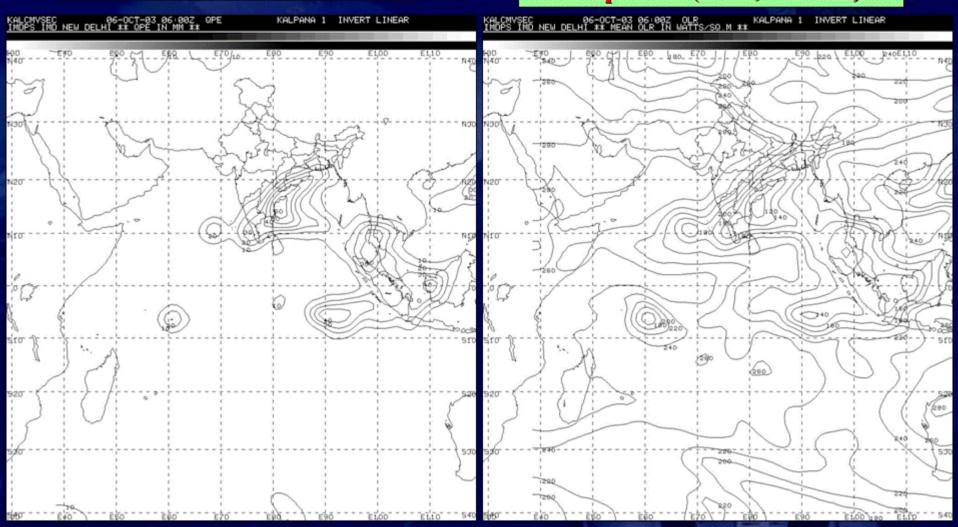

Current Geostationary Meteorological Satellites the South and South West Asian Region

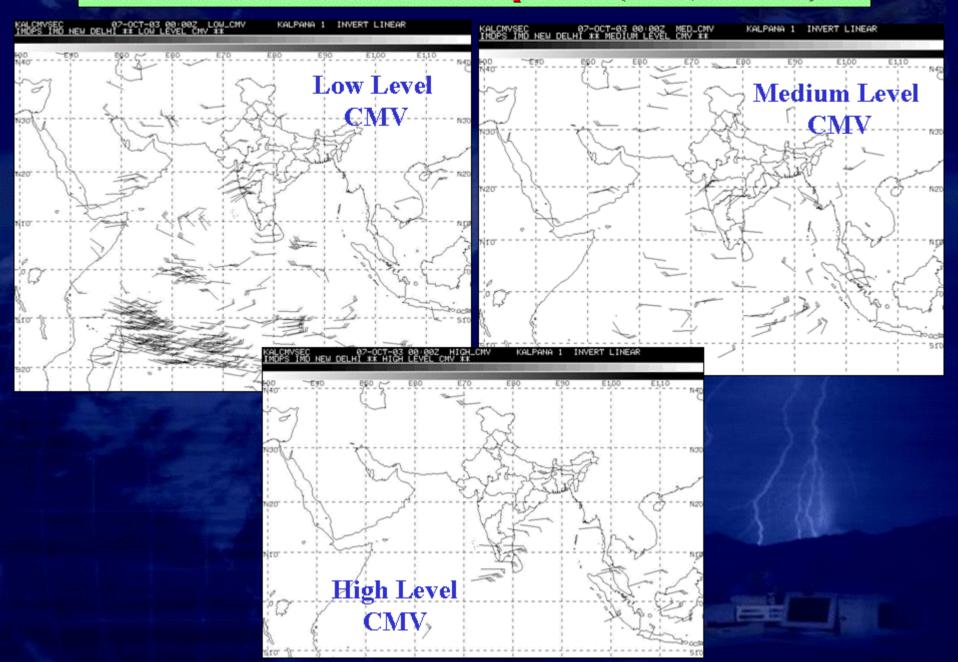

Meteosat 63°E


INSAT-3A IR, 15 Oct 2005 WV, 15 Oct 2005 Kalpana-1 Vis 19 Sep 2005


High Convective clouds and Fog Detection using INSAT-2E –CCD data

Deep Convective Clouds



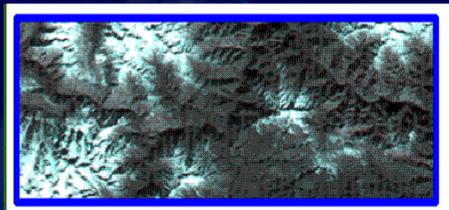


QPE in mm 06-Oct-05 06:00Z Kalpana-1 (IMD, N Delhi)

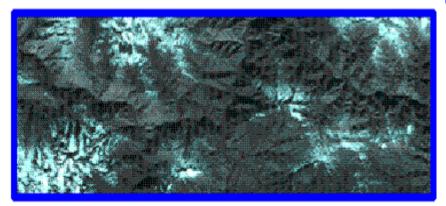
OLR in W/m² 06-Oct-05 06:00Z Kalpana-1 (IMD, N Delhi)

CMV 07-Oct-05 00:00Z Kalpana-1 (IMD, N Delhi)

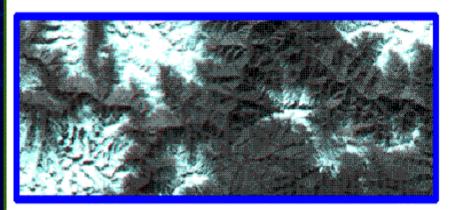
IRS Sensors

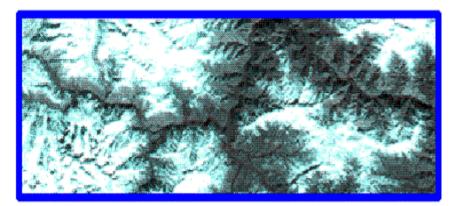

Satellite	Launch Date	Sensors	Channels	Resolution	Swath / Repetivity
IRS-1A	17.03.1988	LISS-1	0.45-0.52µm	72.5 m	148 km / 22 days
			0.52-0.59μm		
			0.62-0.68µm		
			0.77-0. 8 6µm		
		LISS-2	0.45-0.52μm	36.25 m	147 km / 22 days
			0.52-0.59µm		
			0.62-0.68µm		
			0.77-0.86µm		
IRS-1B	29.08.1991	SameasI	RS-1A		
IRS-1C	28.12.1995	LISS-3	0.52-0.59 µm	23.5 m	141 km / 24 days
			0.62-0.68µm		
			0.77-0.86µm		
			1.55-1.70µm	70.5 m	148 km / 24 days
		WiFS	0.62-0.68µm	188 m	770 km / 24 days
			0.77-0.86µm		
			1.55-1.69µm	188 x 246 m	
		PAN	0.50-0.75µm	5.8 m	70 km / 5 days
IRS-1D	29.09.1997	Same as IRS-1C			
IRS-P3	21.03.1996	WiFS	Same as IRS-1C but additional band in MIR		
		MOS-A	0.755-0.768µm	1569 x 1395 m	195 km / 24 days
		MOS-B	0.408-1.01µm	523 x 523 m	200 km / 24 days
		MOS-C	1.5-1.7µm	523 x 644 m	192 km / 24 days
IRS-P4	26.05.1999	ОСМ	402-422nm	360 x 236 m	1420 km / 2 days
			433-453nm		
			480-500nm		
			500-520nm		
			545-565nm		
			660-680nm		
			745-785nm		
			845-885nm		
		MSMR	6.6, 10.6, 18, 21 f	ar SST, SSWS, T	WV, LWC

IRS Applications


IRS data is being used for a diverse range of applications such as:

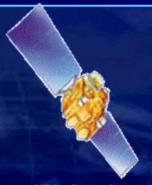
- crop acreage and production estimation of major crops,
- drought monitoring and assessment based on vegetation condition.
- flood risk zone mapping and flood damage assessment,
- hydro-geomorphological maps for locating underground water resources,
- irrigation command area status monitoring,
- · snowmelt run-off estimation,
- · land use and land cover mapping,
- · urban planning,
- · biodiversity characterisation,
- · forest survey,
- · wetland mapping,
- · environmental impact analysis,
- · mineral prospecting,
- · coastal studies,
- integrated surveys for developing sustainable action plans


MONITORING OF SEASONAL SNOW IN WESTERN HIMALAYAS


IRS - 1C of Nov. 26, 1996

IRS-1D of Nov. 09, 1998

IRS-1C of Nov. 11, 1997


IRS TC of Nov. 09, 1999

SEASONAL SNOW COVER LESS IN EARLY WINTER OF 1996-99

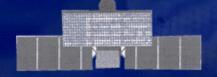
RESOURCESAT - 1

In-orbit replacement for IRS

1C/1D with enhanced capabilities

Launch: 17th October, 2003

Orbit : Sun synchronous, 817 km


Payloads : LISS-4, LISS-3, AWIFS & PAN

Camera Tilt : ± 26°

SENSOR	BANDS	RESOLUTION (m)	REPETIVITY (Days)	SWATH (km)
LISS-3	G, R, NIR, SWIR	23.5	24	140
LISS-4	G, R, NIR	5.8	5	23
PAN (R)		5.8	5	70
AwiFS	G, R, NIR, SWIR	55	5	700

RISAT - 1

Multimode C-band SAR to provide all weather imaging capability

Launch : 2005

Orbit : Sun synchronous, 586 km

Payload : SAR

Spectral Range : C - band

Resolution : 3-50 m in different modes

Swath : 10-240 km in different

modes

Indian Remote Sensing – R&D Satellites for Climate / Weather

IRS-P4

Specifications

Altitude

Swath

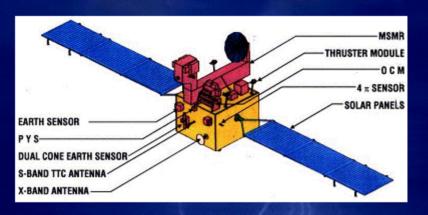
Repetivity

Orbit inclination

Launch

Sensors

720 Km


1360 Km

2 days

98

May 26, 1999

MSMR & OCM

MSMR

Weight

65 Kg

Frequency

6.6, 10.6, 18 and 21 GHz

Polarization

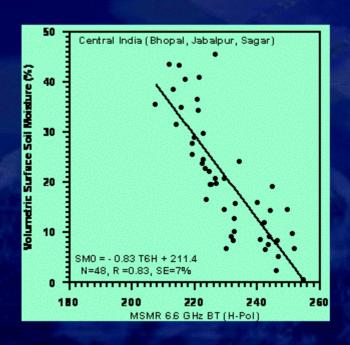
V & H

Spatial Resolution

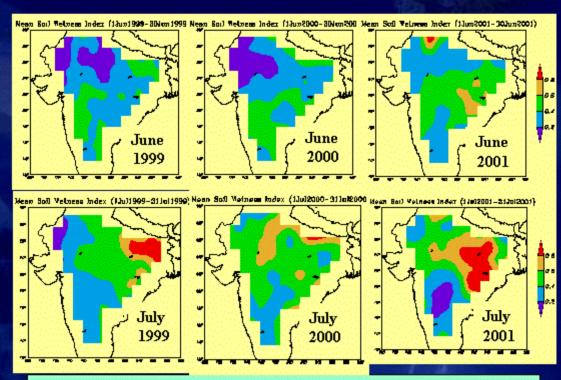
40 to 120 Km

Temperature Resolution 1 K

OCM


Sensor	OCM - 1
Resolution (km)	0.360
Swath(km)	1420
Repeativity(days)	2
Equatorial crossing (hrs)	12:00
Spectral bands (nm)	412±10
	443±10
	490±10
	510±10
	555±10
	670±10
	765±20
	865±20
Radiometric quantisation	12
SNR	~350

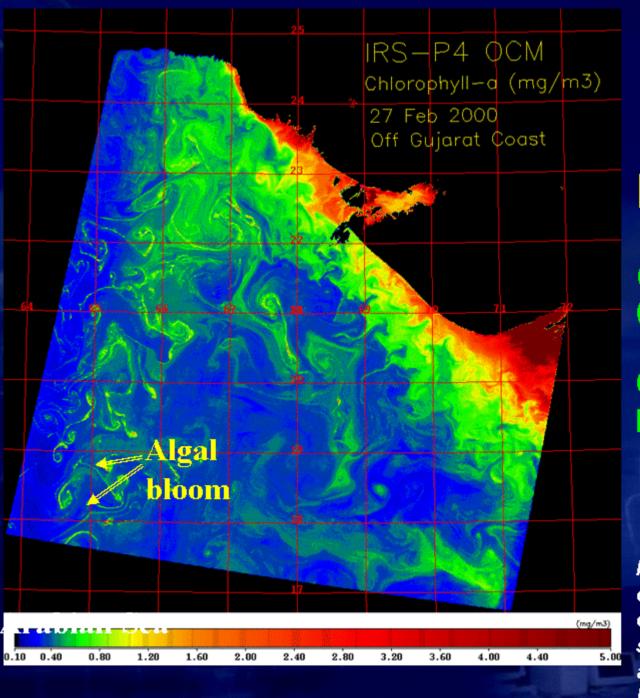
Parameters from MSMR


Range	Resolution	Accuracy	Channels	Parameters
0.2-7.5 Kg/cm ²	50 x 36 Km	0.4 g/cm ²	21 with 18 & 10	WV
0 - 80 mg/cm ²	50 x 36 Km		21 with 18 & 10	CLW
2 24 mail	75 -: 75 V	2.0 ma-l	10 with 6 19 P. 21	cew
2 - 24 ms ²	75 X 75 Km	2.0 ms ¹	10 With 6,18 & 21	SSW
273 - 303 K	150 x 146 Km	1.5 K	6 with 10,18 & 21	SST
	0.2-7.5 Kg/cm ² 0 - 80 mg/cm ² 2 - 24 ms ⁻¹	50 x 36 Km 0.2-7.5 Kg/cm ² 50 x 36 Km 0 - 80 mg/cm ² 75 x 75 Km 2 - 24 ms ⁻¹	0.4 g/cm ² 50 x 36 Km 0.2-7.5 Kg/cm ² 50 x 36 Km 0 - 80 mg/cm ² 2.0 ms ⁻¹ 75 x 75 Km 2 - 24 ms ⁻¹	21 with 18 & 10

R & D Parameters: Rainfall Sea Ice Soil Moisture

Large Area Soil Moisture using IRS-P4 MSMR Brightness Temperature

Regression Equation of Observed Soil Moisture with the MSMR 6.6 GHz BT

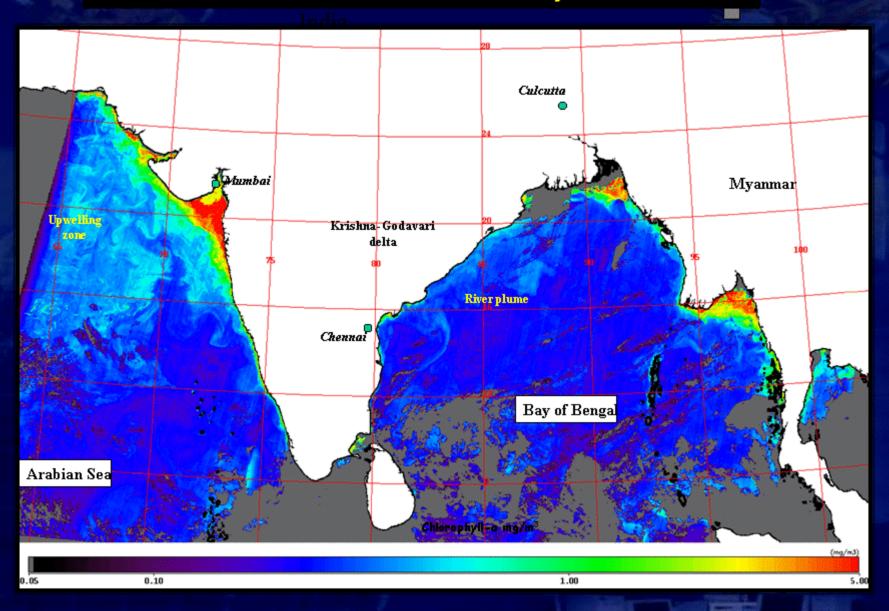

Monthly Soil Wetness Index Computed from MSMR 6.6 GHz BT data for June and July 1999, 2000, 2001

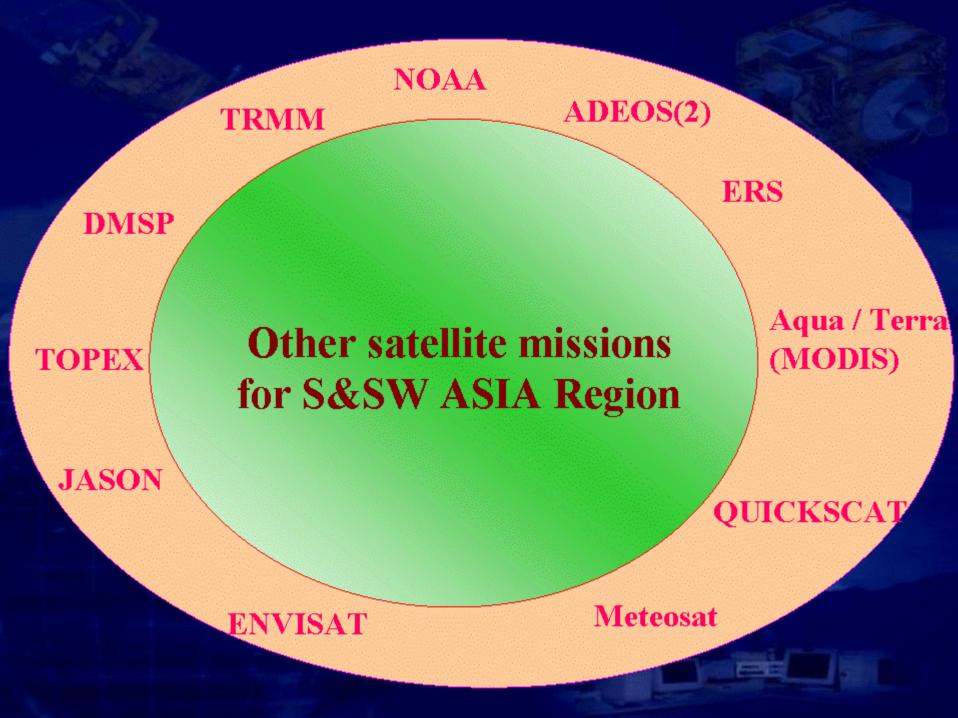
$$m{SWI} = rac{m{T}_{b, ext{max}} - m{T}_{b}}{m{T}_{b, ext{max}} - m{T}_{b, ext{min}}}$$

SWI = 0 → Dry Soil SWI = 1 → Saturated Soil

Ocean Colour Monitor

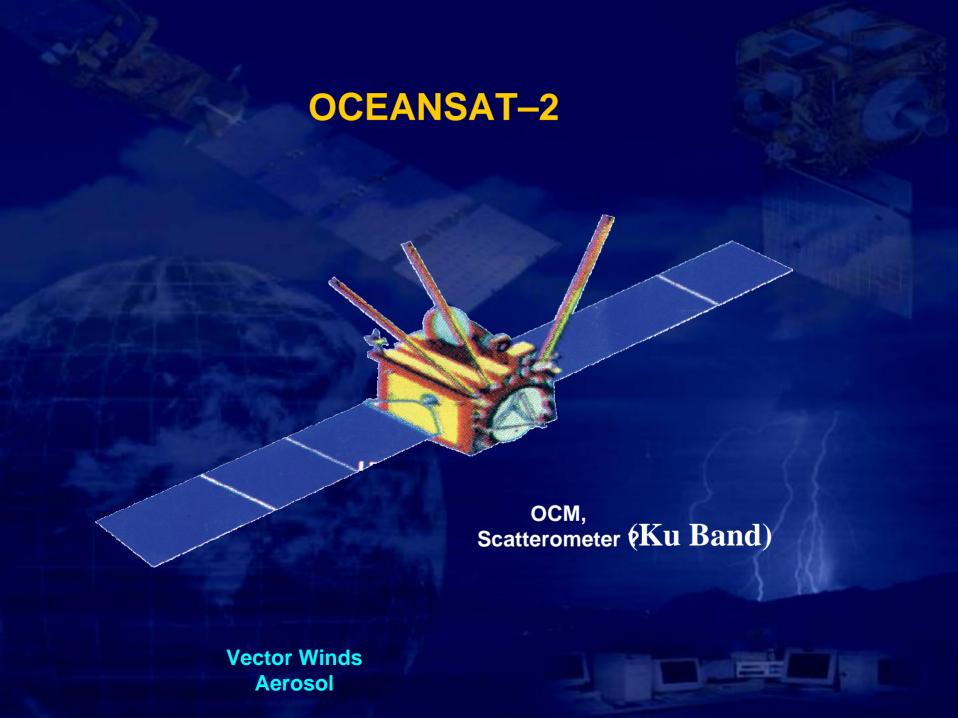
Sensor	OCM - 1	OCM - 2
Resolution (km)	0.360	0.360
Swath(km)	1420	1420
Repeativity(days)	2	2
Equatorial crossing (hrs)	12:00	12:00
Spectral bands (nm)	412±10	412±10
	443±10	443±10
	490±10	490±10
	510±10	510±10
	555±10	555±10
	670±10	620±10
	765±20	745±20
	865±20	865±20
Radiometric quantisation	12	- 3
SNR	~350	


IRS-P4 OCM


Chlorophyll-a (mg/m³)

Off Gujarat coast, India (27 Feb, 2000)

Image shows distribution of algal bloom in open ocean waters of Arabian sea. High pigment patches are present in bottomleft corner of image.


Chlorophyll-a distribution in Arabian Sea and Bay of Bengal using IRS-P4 OCM data 29 & 30 January 2000

- OCEANSAT-2 (2007)
- INSAT-3D (2007)
- MeghaTropiques (2008?)
- Climatsat (?)

Improved Understanding of Mesoscale Systems

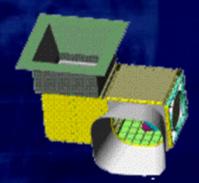
6 Channel IMAGER

Spectral Bands (µm)

Visible : 0.55 - 0.75

Short Wave Infra Red : 1.55 - 1.70

Mid Wave Infra Red : 3.80 - 4.00


Water Vapour : 6.50 - 7.00

Thermal Infra Red - 1 : 10.2 - 11.3

Thermal Infra Red - 2 : 11.5 - 12.5

Resolution : 1 km for Vis, SWIR
 4 km for MIR, TIR

8 km for WV

19 Channel SOUNDER

Spectral Bands (μm)

Short Wave Infra Red : Six bands

Mid Wave Infra Red : Five Bands

Long Wave Infra Red : Seven Bands

Visible : One Band

Resolution (km) : 10 X 10 for all

bands

No of simultaneous : Four

sounding per band

NINETEEN CHANNEL ATMOSPHERIC SOUNDER

A-19 channels atmospheric sounder for derivation of vertical temperature and moisture profiles with a resolution of 10 km at Sub-Satellite and capability of full disk coverage every half-hour is proposed on board INSAT 3D.

SIX CHANNELS IMAGER ON INSAT 3D

Channel No.	Wavelength	Band	Resolution (Km)
1	0.55 - 0.75	um	1
2	1.55 - 1.70	um	1
3	3.7 - 3.95	um	4
4	6.5 - 7.1	um	8
5	10.3 - 11.3	um	4
6	11.3 - 12.50	um	4

	<u> Malanan II I. </u>	
Channel No.	Central Wavelength in um	Principal absorbing constituents
1	14.71	CO-2 band
2	14.37	CO-2 band
3	14.06	CO-2 band
4	13.96	CO-2 band
5	13.37	CO-2 band
6	12.66	water vapor
7	12.02	water vapor
8	11.03	window
9	9.71	ozone
10	7.43	water vapor
11	7.02	water vapor
12	6.51	water vapor
13	4.57	N-2 0
14	4.52	N-2 0
15	4.45	CO-2
16	4.13	CO-2
17	3.98	window
18	3.74	window
19	0.69	vis

Megha Tropiques

SAPHIR

For studying water cycle and energy exchanges in the tropical belt

Low inclination (20°) for frequent simultaneous observations of tropics

- Water vapour
- Clouds
- Cloud condensed water
- Precipitation
- evaporation

- Water vapour profile
- Six atmospheric layers upto
 12 km height
- 10 km Horizontal Resolution

- Outgoing fluxes at TOA
- · 40 km Horizontal Resolution

MADRAS

- Precipitation and cloud properties
- 89 &157 GHz: ice particles in cloud tops
- 18 & 37 GHz: cloud liquid water and precipitation
- · 23 GHz: Integrated water vapour

AND???

Contributing to Global Precipitation Mission (GPM)

Mission Objective

- ➤ Understanding the water cycle and energy exchanges that characterize the Tropical Convective System (TCS)
- > Improving models for weather prediction particularly of cyclones, floods etc.

Our Objective

- ➤ Retrieval and Validation of rainfall over ocean and land and their Assimilation in Atmospheric & Oceanic Models.
- > Understanding the Interannual variation of rainfall in relation to the Intraseasonal oscillation (ISO)

