Infrared Atmospheric Sounding Interferometer

IASI Main objectives of mission

- Geophysical variables Température profile Humidity profile Ozone total amount CO, CH₄,N₂O
- Vertical resolution 1 km (low troposphere) 1-2 km (low troposphere) Content integrated Content integrated
- Horizontal sampling 25 km (cloud free) 25 km (cloud free) 25 km (cloud free) 25 km (cloud free) 100 km
- Accuracy 1 K (cloud free) 10 % (cloud free) 5 % (cloud free) 10 % (cloud free)

IASI Partnership : Cnes-Eumetsat

4

- ⇒ Cnes is leading the IASI program in association with Eumetsat.
- Cnes has technical oversight responsibility for the instruments up to the end of in-orbit commissioning, and will develop the date processing software and operate a technical expertise centre.
- Eumetsat contribute to the funding of the first flight model at the level of a recurrent model cost and fund the lasi 2 and lasi 3 models

Eumetsat is responsible for the interfaces lasi/Métop risks and is in charge of operating lasi

⇒ Cnes and Eumetsat have jointly implemented a scientific group the ISSWG

IASI Main characteristics.....

Pixel diameter Sample **Field of view Spectral range Spectral resolution Radiometric resolution** Lifetime **Power** Size Mass **Data rate**

12 km au nadir 25 km au nadir ± 50° 645 to 2 760 cm⁻¹ 0.35 to 0.5 cm⁻¹ 0.25 to 0.5 K **5 years** 210 W 1.2 m x 1.1 m x 1.3 m 236 kg 1.5 megabits per second

IASI characteristics

6

Sounder : Michelson interferomer with +/- 2cm OPD

3 bands : B1[645; 1240 cm-1], B2[1200; 2040], B3[1960; 2760]

Imager : Array of 64*64 0.9 km resolution pixels in 10.3-12.5 µm

ITSC 13- Ste Adèle (Canada)-Nov 2003

ITSC 13- Ste Adèle (Canada)-Nov 2003

9

q

ITSC 13- Ste Adèle (Canada)-Nov 2003

IMAGER SUBSYSTEM

- Unique 10,5 12,5 µm spectral channel
- 128 x 128 microbolometer matrix
- Focal plan, temperature controled by a Peltier cooler

Integrated Imaging Subsystem

ITSC 13- Ste Adèle (Canada)-Nov 2003

Mes P4

Mod P4

12

PERFORMANCE STATUS : SPECTRAL

3,0

2,5

20

1,5

-12

Shape Variation

0,5 0,0 -0,5

The Instrument Spectral Resolution Function (ISRF) measured during the optical vacuum test is similar to the predicted one.

PERFO	RMANCE ST/	ATUS : SPE					
⇒ ISRF CENTROID RELATIVE SHIFT							
Within specification ($< 2.10^{-4}$) for all bands							
⇒ ISRF CENTROID STABILITY							
less than 4.10 ⁻⁷ in all bands (< 10 ⁻⁶ specified)							
⇒ SHAPE ERROF	R INDEX						
spectral band	٤ 1	² ع	specified				
B1	In progress	0,012	< 0.046				
B2	In progress	0,017	< 0.056				
B3	In progress	0,017	< 0.070				

Instrument radiometric performance in NeDT before contamination

15

Results of Optical vacuum test July 2003

Instrument radiometric performance in NeDT after ice contamination

PERFORMANCE STATUS : RADIOMETRY Results of Optical vacuum test July 2003

Bigger than expected.

A working group of experts from CNES and ALCATEL has analyzed the causes of the high level of icing and is proposing recommendations.

Preliminary outcomes of the WG :

- water outgasing from carbon fiber and MLI is responsible of contamination.

- identification of leakage between the interferometer cavity and the field lens cavity (100 K)

Hermeticity of the field lens cavity has to be improved.

⇒ RADIOMETRIC CALIBRATION

Absolute accuracy < 0.3 K(0.5 K specified)

ITSC B- Ste Adele (Canada) - Nov 2003 rence between pixels :

PERFORMANCE STATUS : GEOMETRY

- \Rightarrow Non Uniformity of the Instrument Point Spread Function (IPSF) : compliant with specification (+/- 5%) except for pixel 4.
- ⇒ Pixels geometrical characterisation

⇒ Pixel diameter : compliant with the expected values (less than 0.1 mrd difference)

⇒ Angular distance (in mrd) between pixel radiometric centers (nominal value is 21.63 mrd)

	P1P2	P2P3	P3P4	P4P1
B 1	21,65	21,61	21,67	21,61
B2	21,52	21,68	21,57	21,55
B3	21,55	21,66	21,57	21,57

⇒ Effective pixel centres included within circles of less than 0.15 mrd in radius centered on the reference square corners (specification is 2 mrd).

PERFORMANCE STATUS : IMAGER

RADIOMETRIC PERFORMANCES

NEDT = 0.57 K (specified at 0.80 K).

Calibration accuracy < 1 K

Dynamic range : noise better than specification from 200 K to 300 K of scene temperature

GEOMETRICAL PERFORMANCE

4 blind pixels (2 % specified)

ITSC 13- Ste Adèle (Canada)-1

rr

<u>IA</u>S

IASI level 0 and level 1 products

⇒ Level 0 : Raw IASI telemetry data

22

- on-board calibrated spectra (demultipexed, time re-ordered)
- associated uncalibrated IIS images
- Housekeeping data and verification data

⇒Level 1a : unapodized calibrated spectra and corresponding IIS images corrected from all geometrical and instrumental effects

decoding, radiometric calibration, spectral calibration IASI/AVHRR <u>coregistration</u> georeferencement and dating

 \Rightarrow Level 1b : Level 1a resampled at nominal spectral interval (0,25 cm⁻¹)

⇒Level 1c : Level 1b apodized to obtain the <u>nominal ISRF</u>

+ analysis of AVHRR radiances in the IASI FOVS

INSTRUMENT

CGS Milestones System MilestonesOPERATIONAL SOFTWARE

Reviews

ActivitiesIASI SYSTEM / Reviews ActivitiesTEC / Reviews

Payload Models deliveriesIASI / EPS System Activities

The Technical Expertise Center

- Dedicated to IASI performance verification (highest priority)
- ⇒ Objectives are :
 - in-flight update of instrument characteristics (firstly established by on ground tests)
 - monitoring of the instrument and level 1 processing in commissioning phase
 - operational monitoring in routine exploitation phase
- ➡ Central for the Level1 Cal/Val
- ➡ Functions are :
 - initialisation
 - for on board processing :
 - for level1 processing
 - Monitoring the performance of the system and investigation
 - providing information on quality
 - modify instrument modes

Performances monitored by the TEC

- Radiometric noise of the instrument
- ➡ Calibration interferograms (BB and CS)
- ➡ Contrast and gain of the interferometer
- Spectral calibration performed by Level 1 processing
- Detection chain offset and gain + non linearity
- → on-board complex radiometric calibration
- Reduced spectra evolution
- ➡ Cube corner offset evolution
- ⇒ spikes detection criteria
- On-board coding tables change
- Coregistration sounder/IIS and IIS/AVHRR
- Dead pixels of IIS

