

Environmental Research, Inc.

Overview of the CrIMSS (CrIS/ATMS) Retrieval Algorithm and Application to AMSU, NAST-I and AIRS Data

Xu Liu, Jean-Luc Moncet, Richard Lynch and Ned Snell AER Inc.,131 Hartwell Ave., Lexington, MA 02421

Most of this work was funded by the NPOESS Integrated Program Office (NPOESS-IPO) through a sub-contract with ITT

Cross-Track Infrared and Microwave Sounder Suite (CrIMSS)

- Infrared component Cross-track Infrared Sounder (CrIS)
- Microwave component Advanced Technology Microwave Sounder (ATMS)
- AER is the Environmental Data Record (EDR) algorithm developer for CrIMSS
 - Algorithm used to "convert" Sensor Data Records (SDRs) into EDRs
 - Algorithm used by ITT for sensor design trade studies and performance evaluations
 - Algorithm designed for transition to operational environment
- Physical retrieval approach extracts maximum Information from CrIMSS Data
 - fast forward model based on AER's Optimal Spectral Sampling (OSS) technique
 - Excellent (less than 0.05K) agreement with LBLRTM
 - Efficient Jacobians calculation
 - Enables simultaneous retrieval of all parameters
 - Modified maximum-likelihood Inversion
 - Explicit treatment of non-linearity
 - Empirical Orthogonal Function (EOF) transformation of the retrieved variables to compress the state vector and stabilize the inversion
- Algorithm has been adapted to analyze AMSU/AIRS/NAST-I data

Modular Design For Easy Algorithm Updates

- CrIMSS EDR algorithm consists of 7 modules
 - Initialization

Environmental Research, Inc.

- Pre-processing
- MW-only retrieval
 - Provides first guess for cloud clearing algorithm
 - Used by for clear sky identification
 - Provides information below clouds under overcast condition
- Scene Classification
 - Determines number of cloud formation (NCF)
 - Identifies Clear FOVs
 - Groups 9 FOVs into several clusters for maximum horizontal reporting
 - Setup appropriate cloud retrieval strategy
- Combined IR+MW retrieval
 - Further improves EDR performance by using both IR and MW radiance
- Quality control
- Post-processing

ATMS Microwave Retrieval Provides First-Guess for CrIS Infrared Retrieval

- Performs simultaneous retrieval of all parameters
 - No need to estimate errors due to fixing some parameters during inversion process
 - Non-linear inversion is very robust
 - even in the presence of clouds (non-linear effects)
 - Delta T $(T_{skin} T_{sfc})$ is retrieved instead of Tskin
 - No need to keep the correlation in the covariance matrix
 - No need to carry multiple covariance matrices for different terrains
- EOF transformation of temperature and water vapor profiles
 - Stabilizes and constrains solution
 - Speeds up inversion by decreasing the number of retrieved variables
- Covariance and background stratification provides better EDR performance
 - Based on retrieved surface temperature and emissivity
 - Improves retrieval for dry atmosphere and cold surface

Retrieved Parameter	# of elements
Temperature	20 EOFs
Water Vapor	10 EOFs
Skin Temperature	1 ($\Delta T = T_{skin} - T_{sfc}$)
Surface Emissivity	5 EOFs
Cloud Liquid Water	1
Cloud Top Pressure	1

aer

Atmospheric and Environmental Research, Inc.

Scene Classification Module Determines Scene Variability and Setup Cloud Retrieval Strategy

- Number of cloud formation (NCF) determined by Principal Component Analysis
 - Cloud Clearing (CC) needs more FOVs than NCF to remove clouds effect
 - NCF is used to stabilize the CC inversion (highly effective for low contrast scenes)
- Clear FOVs identified by comparing observed CrIS radiance with that generated using MW retrieval and IR forward model
 - Used to distinguish overcast from clear scenes under low contrast condition
 - Can be enhanced use external data (VIIRS, MODIS...)
- FOV-clusters formed according to NCF and surface inhomogeneity
 - Coastlines are not grouped with ocean
 - Account for terrain variations
- Three retrieval strategies setup
 - Clear retrieval
 - Average radiances (or do nothing for a single FOV)
 - Cloud Clearing
 - generate cloud-cleared radiance
 - Overcast
 - Use sub-set of IR channels to retrieval properties above cloud top
 - MW channels used to retrieval properties below clouds
 - No-retrieval

Principal Component Analysis (PCA) Used to Identify Different Cloud Formations

- PCA applied to cloud-sensitive channels (709-746 cm⁻¹)
 - Uses spatial and spectral information for all FOVs within one filed of regard
 - Detects surface inhomogeineity
 - Has high sensitivity for high clouds
- NCF determined from Residual Standard Deviation (RSD) and Chi-Square (χ^2) tests
 - Sensor noise level used as threshold for sensitivity
 - Automatic and objective
 - Max value from the two tests is selected

$$RSD(n) = \left[\frac{1}{nchan*(nfov-n)}\sum_{j=n+1}^{nfov}\lambda_j\right]^{1/2}$$

$$\chi^{2}(n) \equiv \sum_{i=1}^{n chan} \sum_{k=1}^{n fov} \frac{\left[R_{ik} - \hat{R}_{ik}(n)\right]^{2}}{\sigma_{ik}^{2}}$$

Second Stage of Retrieval Uses Both CrIS and ATMS Radiances to Better Handle Clouds

- Simultaneous retrieval of all parameters using MW and IR radiances
 - Both MW and IR use OSS forward model
 - Robust inversion algorithm
- Accommodates all 3 retrieval strategies in a single inversion loop
 - Cloud Clearing is an integral part of the inversion
 - No-need to have multiple iterations after cloud-cleared radiance is generated
 - NCF is used to constrain the CC inversion via Singular Value Decomposition
 - State vector errors covariance (in EOF domain) from MW retrieval is used to calculate correlated radiance errors before CC inversion
 - Provides retrieval under overcast condition
 - Automatically selects IR channels to retrieval properties above cloud top
 - MW channels used to retrieval properties below clouds
- ATMS is used together with CrIS to provide best performance
 - MW Chisq from 1st and 2nd stage retrievals can be used to assess the success of CC
 - 2nd stage MW Chisq will be large if there are cloud signatures in the cloud-cleared radiances

Environmental Research, Inc.

All Parameters Related to ATMS and CrIS Retrieved Simultaneously

- EOFs used to compress state vector
- Column amount is retrieved for trace gases
 - Tropopause information is used to adjust the profile shapes of CH4 and N2O
 - Scaling factors are retrieved relative to initial profiles

Retrieved Parameter	# of elements
Temperature	20 EOFs
Water Vapor	10 EOFs
Skin Temperature	1
Ozone	1 (column correction)
MW Surface Emissivity	5 EOFs
MW Cloud Liquid Water	1
MW Cloud Top Pressure	1
IR Surface Emissivity	12 hinge points
IR Surface Reflectivity	12 hinge points
CO ₂	Currently 0
N ₂ O	1 (column correction)
CH₄	1 (column correction)
со	1 (column correction)

Science Applications and Programs Division

Atmospheric and Environmental Research, Inc.

Application of CrIMSS Algorithm to AIRS Retrievals: For 10-04-03 Granule 008

AIRS Retrievals: For 10-04-03 Granule 008

Co-located raob and AIRS/AMSU retrieval

Raob at (-14.4/-170.7/0.0Z)

Red: AMSU Black: AIRS Green: Raob

- Sonde and AIRS is 49 min. apart
- AIRS provides better temperature and moisture retrieval than AMSU
 - No HSB to provide moisture profile for MW
 - TPW is retrieved well for MW

Science Applications and Programs Division

Atmospheric and Environmental Research, Inc.

aer

Application of CrIMSS and NASA-Goddard AIRS Algorithms to Simulated CrIS and AIRS Scanline Scenes (Courtesy of Joel Suskind)

Science Applications and Programs Division

Atmospheric and Environmental Research, Inc.

Cross-section for NASTI Retrieval (Degraded to CrIS Resolution): Off Coast of Andros Island

Comparison of CrIS NAST-I Retrieval with Drop Sonde

Direct High Spectral Resolution NAST-I Retrieval: CAMEX-3 Andros Island

Higher spectral resolution (as compared to degraded to CrIS resolution) captures the moisture vertical structure better

Red: Radiosonde Black: Retrieval Dashed: Background

AMSU Retrievals: Comparison With Raobs

AER testbed has been collecting radiosondes and collocated AMSU measurements for over a year

Criteria: +/- 6 hours and 200km

Compiled over 8000 matches for NOAA-16 data

Started to compile RAOB matches for EOS AIRS/AMSU data

Error analysis performed upon retrieval which retrieve clw<0.05 kg/m^2

Moisture field deviates more from simulation/retrieval study

- •More variable than T
- Collocation error

•Unreliable data for upper atmosphere

RMS difference between RAOBs and Retrievals

•Red: First simulate observation using RAOB profile, then perform retrieval

•Blue: Retrieval performed on AMSU measurement

NOAA-NESDIS Retrievals: from Mitch Goldbergs Web site http://orbitnet.nesdis.noaa.gov:8 0/crad4/zcheng/amsu climate/noaa16

273

266

259

252

245

238

231

224

AMSU Retrievals: Both NOAA-16 and EOS-Aqua

48

40

16

Atmospheric and Environmental Research, Inc.

Retrievals: from Mitch Goldbergs Web site http://orbitnet.nesdis.noaa.gov:8 0/crad4/zcheng/amsu climate/noaa16

Conclusions

- EDR retrieval algorithm for CrIMSS is robust and efficient
 - OSS is a fast and accurate forward radiative transfer model
 - EOF transformation is used to compress the number of retrieved parameters and stabilize the inversion
 - Algorithm allows for inclusion of *a priori* information and accounts for non-linearity in the inversion
 - Simultaneous retrieval approach minimizes errors and provides optimal retrieval
 - Multi-functioned scene classification module maximizes spatial and and spectral information
 - Second stage IR+MW retrieval handles different cloudy conditions
- MW component of retrieval algorithm tested with AMSU-A/B data
 - Results are consistent with NOAA retrievals
 - Results are consistent between sensors on NOAA-16 and EOS platforms
 - Results compare favorably with co-located radiosonde data
- IR component of retrieval algorithm tested with NAST-I data
 - Results are consistent with retrievals performed by NASA Langley
 - Results compare favorably with co-located radiosonde and drop-sonde data
- Algorithm tests started using AIRS data
 - Initial (successful) processing of combined AMSU/AIRS data
 - Results compare favorably to co-located radiosonde data
 - Further algorithm tuning required for complete validation