

NPOESS Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Design and Performance

J. Puschell¹, C. Schueler¹, J. Ed Clement¹, R. Ravella¹, L. Darnton² F. DeLuccia³, Captain T. Scalione USAF⁴, H. Bloom⁴, H. Swenson³

¹Raytheon Santa Barbara Remote Sensing
 ²Northrop Grumman Space Technology
 ³The Aerospace Corporation
 ⁴NPOESS Integrated Program Office (IPO)

VIIRS System to Provide Excellent Environmental Data Records (EDRs)

IORD/TRD Threshold

- VIIRS System Design based on integrated Sensor and Algorithms
- Engineering Development Unit (EDU) approaching integration
- EDR Science Algorithms developed, documented, and publicly released by Raytheon Technical Services Company (RTSC) Information Technology and Scientific Services (ITSS)

IORTHROP GRUMMAN VIIRS Performance Ravtheon Verified by Hardware & Testbed

- EDRs drive algorithm and raw sensor data requirements
- Sensor specification derived from EDRs with testbed
- Sensor performance verified by hardware risk-reduction demonstrations and analyses
- EDR performance verified by testbed with sensor models

Space Technology

VIIRS Sensor Performance ' Defined by Sensor Specification

- Northrop-Grumman Space Technology (NGST) contract to Raytheon Santa Barbara Remote Sensing (SBRS) based on sensor specification
- NPOESS Integrated Program Office (IPO) contract to NGST based on system specification including EDR performance

Photons to Digital Data: VIIRS Architecture Stable Since PDR

VIIRS Post-CDR Refinements Being Verified in EDU*

MODIS-heritage Solar Diffuser Stability Monitor refined to improve performance

4-mirror anastigmat All-reflective Aft optics imager Electronics module (EM) & cables refined to minimize EMI

- Simple all-reflective diamond point turned bolt-together optics
- Proven emissive/reflective calibration

Passive Cryoradiator Cold FPA Dewar Assembly

MODIS-heritage Solar Diffuser screen redesigned to minimize solar modulation

MODIS-heritage blackbody relocated to minimize Earth shine 3-Mirror Anastigmat Rotating telescope refined to eliminate modulated instrument background (MIB)

VIIRS Compact, All Reflective Non-Image Rotating Optical Design

ORTHROP GRUMMAN

Follow the Photon!

Ride-at-bility Dezeriozet feritorezet fe

Sensor Models Being Verified by Raytheon Engineering Development Unit (EDU) Tests

Legend	Model Description				
Α	Signal to Noise Ratio (SNR)				
В	Modulation Transfer Function (MTF)				
С	Polarization Performance				
D	Sequential Ray Trace				
Е	Non-sequential Ray Trace				
F	Thin Films Design and Performance				
G	Structural Design and Performance				
н	Thermal Design and Performance				
Ι	Electronics Simulation				
J	Focal Plane Array (FPA) Performance				

NORTHROP GRUMMAN

Spectral, Spatial & Radiometric Attributes of 22 VIIRS Bands

		Band	Wave-	Horiz Sample Interval (km Downtrack x Crosstrack)		Driving EDRs	Radi- ance	Ltyp or	Signal to Noise Ratio (dimensionless)		
		NO.	(um)	Nadir	End of Scan		Range	тур	Required	Predicted	Margin
		M1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	44.9	352	441	25%
VIR FPA						Aerosols	High	155	316	807	155%
	PIN Diodes	M2	0.445	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	40	380	524	38%
						Aerosols	High	146	409	926	126%
		M3	0.488	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	32	416	542	30%
						Aerosols	High	123	414	730	76%
		M4	0.555	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	21	362	455	26%
						Aerosols	High	90	315	638	102%
S/	L L	l1	0.640	0.371 x 0.387	0.80 x 0.789	Imagery	Single	22	119	146	23%
5	lico	M5	0.672	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	10	242	298	23%
	ŝ					Aerosols	High	68	360	522	45%
		M6	0.746	0.742 x 0.776	1.60 x 1.58	Atmospheric Corr'n	Single	9.6	199	239	20%
		12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	25	150	225	50%
		M7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	6.4	215	388	81%
						Aerosols	High	33.4	340	494	45%
C	CD	DNB	0.7	0.742 x 0.742	0.742 x 0.742	Imagery	Var.	6.70E-05	6	5.7	-5%
		M8	1.24	0.742 x 0.776	1.60 x 1.58	Cloud Particle Size	Single	5.4	74	98	32%
	F	M9	1.378	0.742 x 0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6	83	155	88%
	Ч	13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3	6.0	97	1523%
IR I	е (M10	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	Single	7.3	342	439	28%
I₹	dT	M11	2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12	10	17	66%
Ś	S	14	3.74	0.371 x 0.387	0.80 x 0.789	Imagery Clouds	Single	270 K	2.500	0.486	415%
	H /	M12	3.70	0.742 x 0.776	1.60 x 1.58	SST	Single	270 K	0.396	0.218	82%
	Ę	M13	4.05	0.742 x 0.259	1.60 x 1.58	SST	Low	300 K	0.107	0.063	69%
						Fires	High	380 K	0.423	0.334	27%
LWIR	F	M14	8.55	0.742 x 0.776	1.60 x 1.58	Cloud Top Properties	Single	270 K	0.091	0.075	22%
	Ŷ	M15	10.763	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.070	0.038	85%
	2	15	11.450	0.371 x 0.387	0.80 x 0.789	Cloud Imagery	Single	210 K	1.500	0.789	90%
	Р	M16	12.013	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.072	0.051	42%

VIIRS Provides Operational Data NORTHROP GRUMMAN Continuity in Many Areas, Including Ocean Color*

*With VIIRS improvements: e.g., dual-gain, finer spatial resolution, better sensitivity, etc.

Space Technology

Raytheon

VIIRS Model Predicts Excellent Polarization Sensitivity Margin

VIIRS Band	Bandcenter (nm)	Polarization Specification (%)	-45 degrees	Zero degrees	+45 degrees
M 1	412	3.0	1.30	2.00	2.90
M4	555	2.5	0.50	0.30	0.60
I2 & M7	865	3.0	0.70	0.04	0.02

Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE

Detailed Thermal Modeling Predicts On-orbit Temperature Variations

- Detailed VIIRS thermal model predicts sensor structure and optics element temperatures vs. orbit and time: *Greatest* variations in 1730 (terminator) orbit
- Detailed calibration model uses results to predict emissive band radiometric accuracy: *Model predicts specification margin in all bands*

NORTHROP GRUMMAN

Detailed SST-band Error Budget with On-orbit Temperature Variations

Deremeter	VIIRS Center Wavelength (µm)					
Farameter	3.70	4.05	8.55	10.76	12.01	
Ttypical (K)	270	300	270	300	300	
Temperature knowledge effect (%)	0.32	0.24	0.14	0.09	0.08	
Wavelength knowledge effect (%)	0.20	0.20	0.04	0.03	0.04	
Integrated out-of-band effect (%)	0.30	0.30	0.20	0.10	0.10	
Response vs. scan angle knowledge (%)	0.20	0.20	0.60	0.20	0.20	
Response vs. scan angle pedestal knowledge	0.20	0.20	0.60	0.20	0.20	
Emittance knowledge (%)	0.20	0.20	0.20	0.20	0.20	
Electronic crosstalk (%)	0.20	0.20	0.20	0.20	0.20	
Ghosting (%)	0.24	0.24	0.24	0.24	0.24	
Polarization knowledge effect (%)	0.01	0.01	0.10	0.10	0.10	
Earthshine effect (%) (Tearth=343K)	0.029	0.025	0.009	0.008	0.007	
Solar diffuser screen emission (%) (Tinst=285K)	0.0293	0.0245	0.0091	0.0076	0.0071	
Solar diffuser Sunlight Scatter (%)	0.128	0.110	0.047	0.041	0.038	
Blackbody Skin Temp Effect (%) (Tinst=275K)	0.014	0.003	0.0	0.0	0.0	
Surround Correction Effect (%) (Tinst=285K)	-0.031	-0.028	-0.013	-0.011	-0.01	
Radiometric Calibration Model σ (%)	0.68	0.62	0.55	0.35	0.35	
Allocation Requirement (%)	0.7	0.7	0.6	0.4	0.4	

MODIS SST image courtesy NASA @http://visibleearth.nasa.gov/data/ev2/ev284_global_SST_sm.jpg

Engineering Development Unit (EDU) Approaching Integration Phase

EDU Focal Planes Verified Design

- •All EDU FPAs assembled and tested, including detectors & read-out integrated circuits (ROICs)
- •S/MWIR & LWIR FPAs: Photovoltaic (PV) HgCdTe with integrated "Microlens" technology to reduce background noise
- •All PV HgCdTe allows LWIR time-delay and integration (TDI) and lowers crosstalk
- •Optical alignment of all FPAs provides optimum band-band registration

NORTHROP GRUMMAN

EDU Testing Lowers Risk for Flight Unit Integration & Test

Space Technology

VIIRS on-track to EDU Integration Raytheon & NPP Flight Unit Development

- National Polar-orbiting Operational Environmental Satellite (NPOESS) Visible Infrared Imaging Radiometer Suite (VIIRS) approaching Engineering Development Unit (EDU) integration
 - Several design refinements lowered EDU and flight unit development and test risks
 - Principal post-CDR optics design change to correct modulated instrument background (MIB) approved
 - Sensor specified for excellent EDR performance: Refined design offers margin to sensor specification
 - Detailed quantitative sensor performance modeling completed and partially verified by EDU hardware tests
 - Remaining EDU fabrication and testing will verify models or identify corrective action
- First flight unit for NPOESS Preparatory Project (NPP) scheduled for completion in 2005 for 2006 launch
- Second flight unit for NPOESS initial operational launch in 2130 orbit scheduled for completion in 2006 for 2009 launch