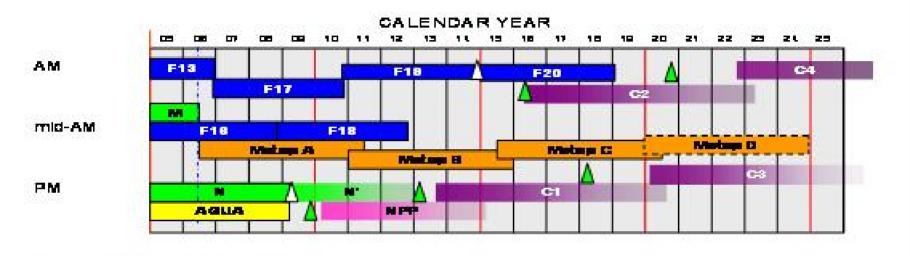


NOAA Report

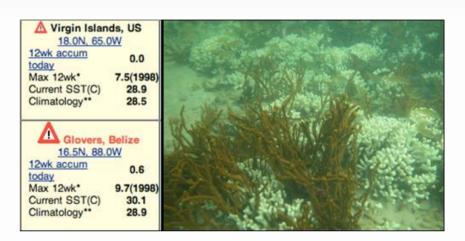

Mitch Goldberg

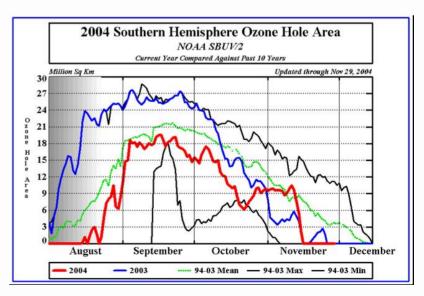
NOAA/NESDIS Center for Satellite Applications and Research

NOAA JOINT POLAR SATELLITE PROGRAM

Sensor Configuration

 AM: Fxx - OLS, SSMI/S, Cxx - VIIRS, Microwave Image/Sounder, SARSAT
 PM: Nxx - AVHRR, HIRS, AMSU Aqua - MODIS, AIRS, AMSU, MHS NPP - VIIRS, CrIS, ATMS, OMPS-Nadir Cxx - VIIRS, Microwave Imager/Sounder (C3), SARSAT, CrIS, ATMS, ADCS, CERES (C1), OMPS-Nadir, SEM, ACDS
 Mid-AM: Fxx - OLS, SSMI/S Metop - AVHRR, HIRS, IASI, AMSU, MHS, GRAS, ASCAT, GOME

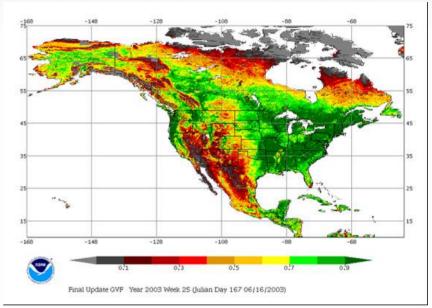

Mission Support to NOAA Programs

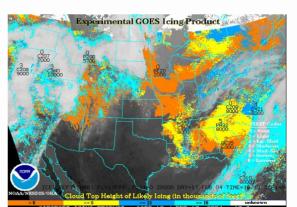


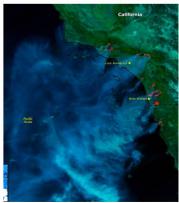
- Ecosystems
 - NOAA CoastWatch Program
 - Real-time distribution of regional SST, Ocean Color and Ocean Winds
 - Coral Reef Watch Program

Climate

- Integrated Climate Data Record Program
 - Improved calibrated radiances
 - Time Series of Ozone , Vegetation Condition (Drought), Hydrology, Temperature, Moisture, Radiation Budget, Clouds, Aerosols, and Carbon
- Reanalysis Project
 - Data assimilation algorithms
 - Radiative transfer models



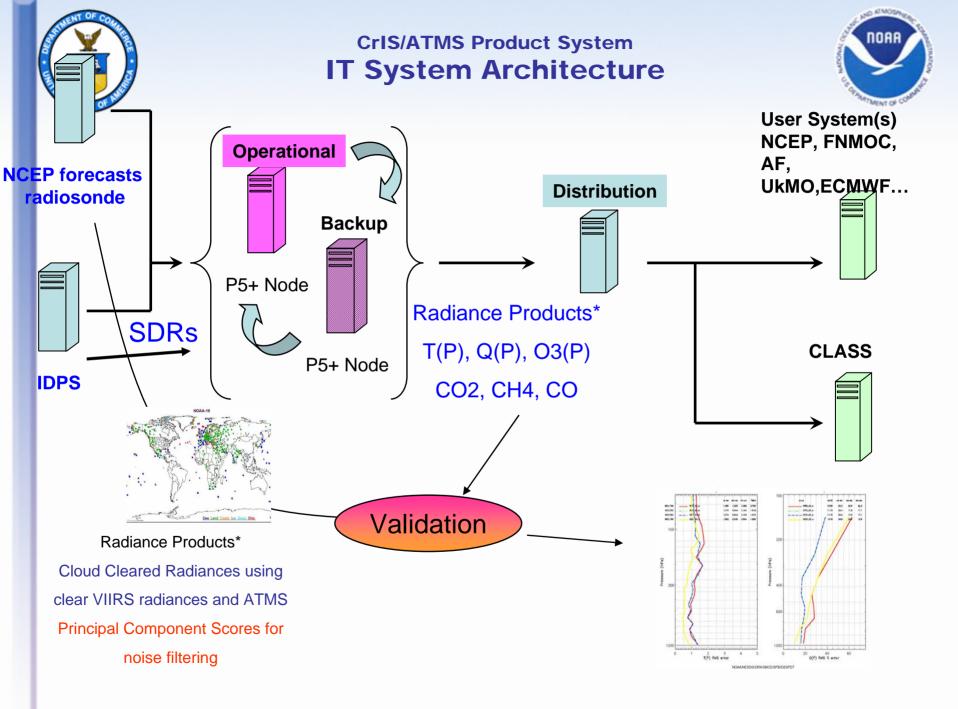



Mission Support to NOAA Programs

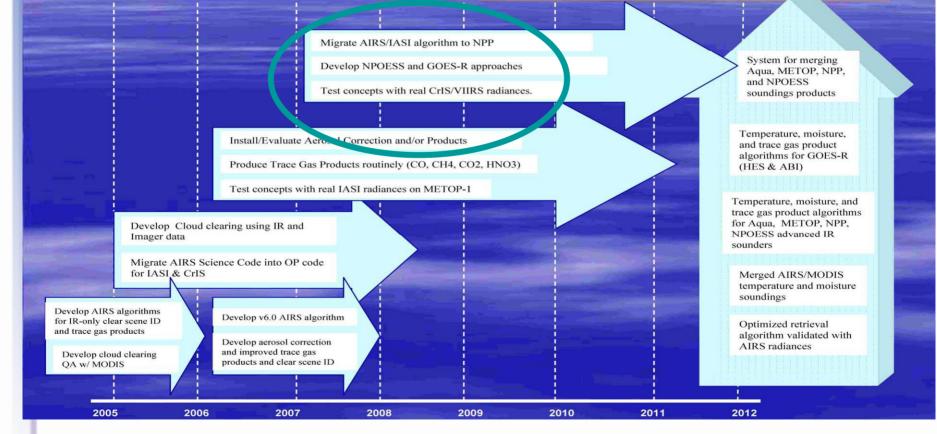
- Weather and Water
 - Joint Center for Satellite Data Assimilation
 - Radiative transfer models
 - Surface emissivity models
 - Improve utilization of hyperspectral infrared radiances and microwave radiances
 - Satellite Derived Winds
 - Surface conditions
 - Hazards
 - Air Quality
 - Forest Fires/Biomass Burning
- **Commerce and Transportation** •
 - Aviation Weather Satellite **Applications**
 - Clear-sky turbulence
 - Convective cloud conditions
 - Icina
 - Volcanic Ash

Key Activities

- NPOESS
- Processing systems for MeTOP and NPOESS Data Exploitation
- GOES-R Algorithm and Cal/Val Effort
- Integrated Cal/Val Enterprise Systems

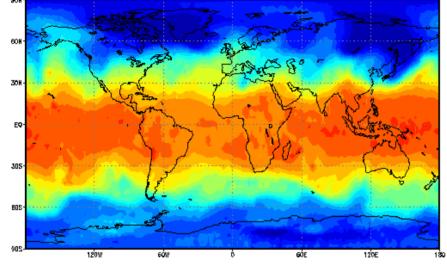

 Includes both radiance and products
- WMO Global Space-based Calibration System (GSICS)
- JCSDA
- Climate Data Records
- Air Quality

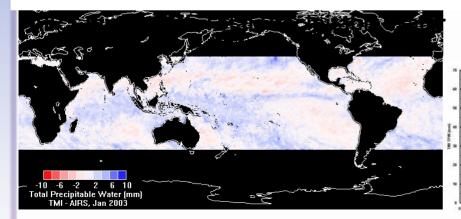
METOP and NDE


- Use integrated approach in algorithm development and validation
 - Same algorithms to process AIRS, IASI, and CrIS
 - Same algorithms to process AMSU, SSMI, SSMIS, ATMS
- Completed processing system for IASI radiance distribution
- Developing IASI level 2 processing includes trace gases
- Begin to develop CrIS and ATMS processing systems

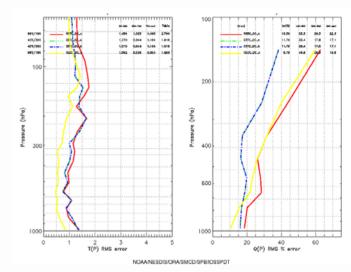
Advanced Product Roadmap

Radiance Products and Atmospheric Soundings from Advanced Infrared and Microwave Sensors for Weather and Climate Applications Project, Chris Barnet & Mitch Goldberg GOAL:


Integrated hyper-spectral products for improved assessments, understanding and prediction of key climate and weather parameters.


Temperature & Moisture Products

AIRS Temperature 500mb, 01JAN2005

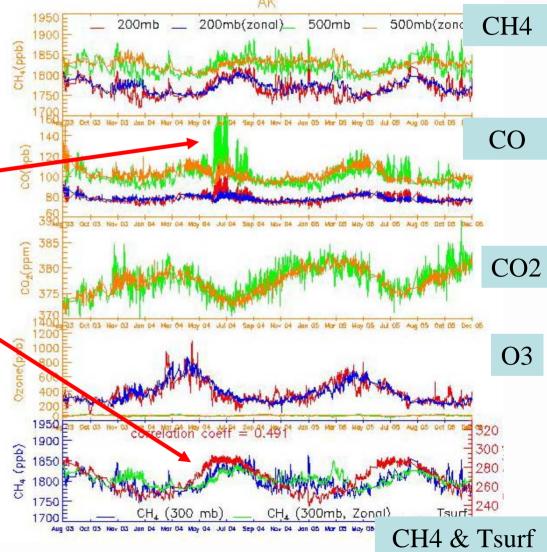


232.5235237.5240242.5245247.5250252.5255257.5260262.5265267.5270272.5275277.5

AIRS Regression (red), AIRS Physical (blue), ECMWF (yellow) vs.

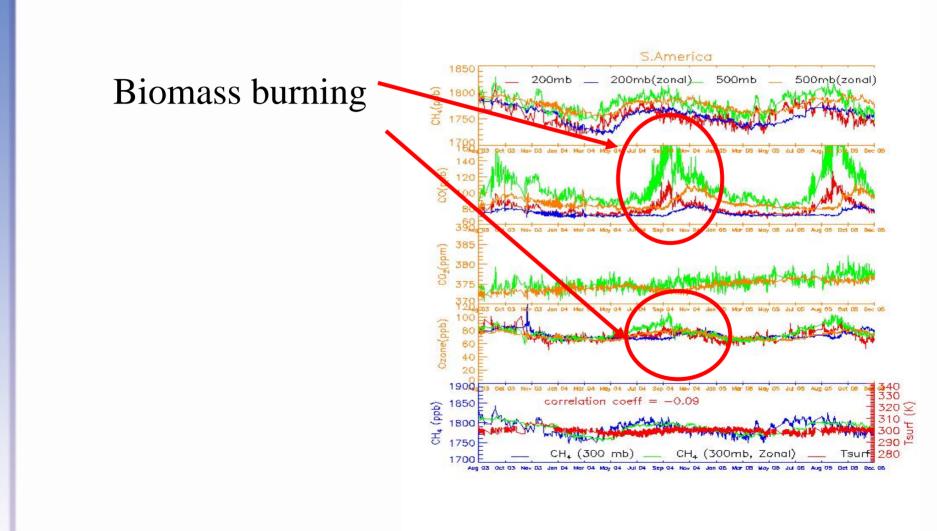
radiosonde

AIRS vs TMI


30 AIRS TPW AIRS Performance 1K per 1 Km layers

< 20% per 2 km layers

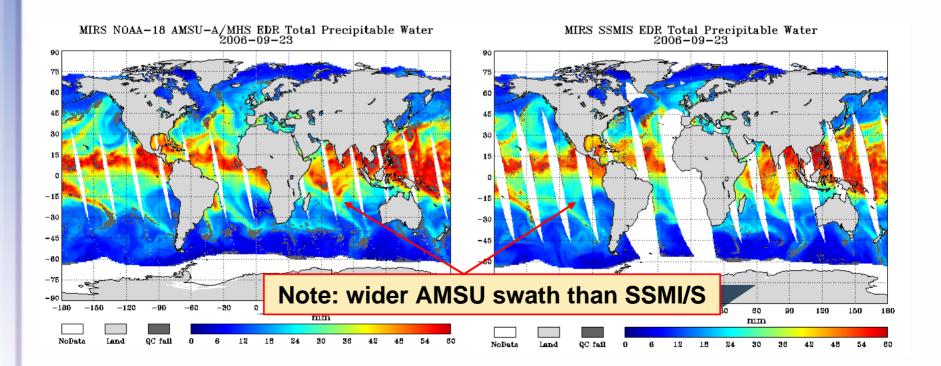
AIRS measures multiple gases (and temperature, moisture and cloud products) simultaneously

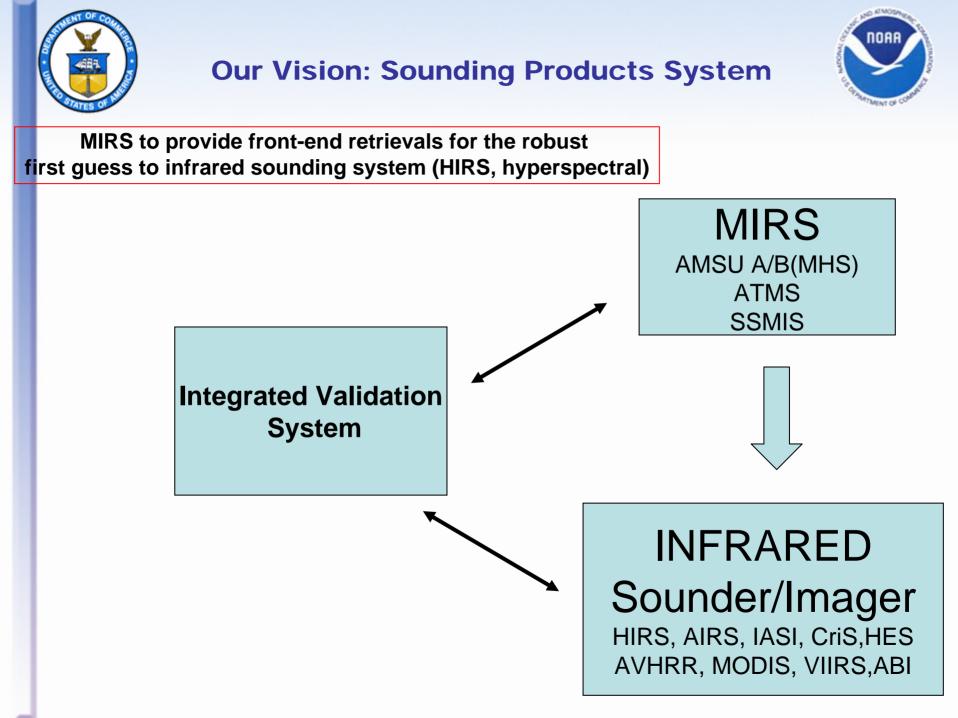

- 29 month time-series of AIRS trace gas products: Alaska & Canada Zone ($60 \le lat \le 70$ & - $165 \le lon \le -90$)
- July 2004 Alaskan fires are evident in CO signal (panel 2)
- Seasonal methane may be correlated to surface temperature (wetlands emission?)
- We have begun to investigate correlations that should exist between species (e.g., O_3 , CO, CH₄ interaction)

29 month time-series of AIRS products South America Zone (-25 \leq lat \leq EQ , -70 \leq lon \leq -40)

Microwave Integrated Retrieval System MIRS Capability

SDR/EDR	POES/METOP	DMSP	NPOESS
	AMSU-A/B; MHS	SSMIS	ATMS
Radiances	4	✓	✓
Temp. profile	✓	✓	✓
Moist. profile	4	✓	✓
Total precipitable water*	✓	✓	✓
Hydr. profile	4	✓	\checkmark
Precip rate*	4	✓	✓
Snow cover*	4	4	√
Snow water equivalent*	4	4	✓
Sea ice *	4	4	√
Cloud water*	✓	✓	\checkmark
Ice water*	4	✓	✓
Land temp*	4	✓	✓
Land emis*	4	*	\checkmark
Soil moisture			✓


* - Currently produced through MSPPS


** - Ocean surface parameters are intermediate products and not produced operationally through MIRS

- Cross-Sensor Intercomparison
 - Comparison of advanced products from AMSU/MHS and SSMI/S (TPW images below)

NPOESS vs. GOES-R Process

- NPOESS acquisition strategy is for the System Prime to be responsible for algorithm development, calibration/validation, and the development of the operational product generation system.
- For GOES-R, the process was changed whereby the Government provides recommended and demonstrated algorithms, cal/val and a notional design for operations to the System Prime. The System Prime can provide alternatives, however these alternatives must be approved by the Government. If approval is not granted, the System Prime must use the Government's recommended solution.
- STAR leads GOES-R Algorithm Working Group

JCSDA FY07 PRIORITIES

- Initial impact assessments of IASI
- Optimize the use of Windsat, COSMIC, GRAS and AIRS observations for further risk reduction for using upcoming operational sensors.
- Prepare for new observational systems.
 - Earth Explorer Atmospheric Dynamics Mission (ADM-Aeolus)
 - GOES-R
- Continue to develop and improve all-weather CRTM
- Improve surface emissivity retrievals
- Expand four-dimensional data assimilation capability to better use observations taken at non-synoptic times.

GSI will replace SSI in early 2007

GSI analysis system

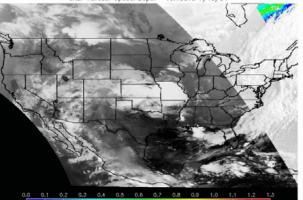
- Grid point definition of background errors
- Improved balance constraints
- Complete rewrite of code
- Inclusion of new observational data sets
- Hybrid sigma-p forecast model
 - Little change in forecast skill

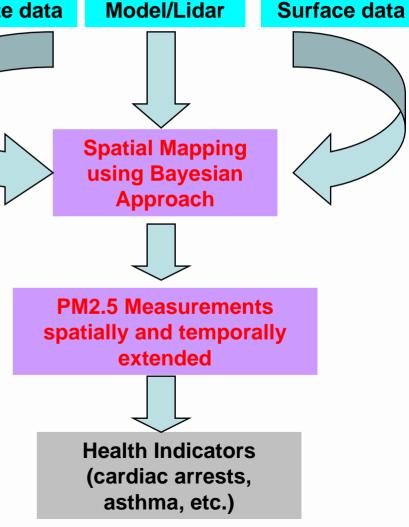
Exable 1: Satellites/Instruments Transitioned into Operations in 2005-2006

Satellite/Instrument	Analysis	Comments
EOS/AIRS radiances υ.1	SSI (GSI)	υ.2 in GSI will use all footprints etc.
AQUA/AMSU-A	SSI (GSI)	Transitioned
AQUA MODIS AMVs v.1	SSI (GSI)	Transitioned.
TERRA/MODIS AMVs .v.1	SSI (GSI)	Transitioned
NOAA/18 AMSU-A	SSI (GSI)	Transitioned
NOAA/18 HIRS/4		Instrument not fully operational
NOAA/18 MHS	(GSI)	Transitioned for next operational analysis (GSI)
NOAA18/AVHRR	SST	Oper. SST produced at EMC
NOAA17/AVHRR	SST	Oper. SST produced at EMC
JASON/ALTIMETER	GODAS	Transitioned (July 2006)

Table 250me Satellite Instruments in the Process of Being Transitioned into Operation

Satellite/Instrument	Analysis	Comments
COSMIC Jan/Feb	GSI	Currently RT cycling in GSI
СНАМР	GSI	NRT tests completed, cycling currently
WINDSAT	SSI, GSI	Initial trial with NRL EDRs successfully completed. RT trial underway
SSMIS	GSI	Cycling with UKMO corrections.Impact +ve
MODIS	GSI	EE implemented for intelligent thinning of AMVs
AIRS υ.2 (every fov -251 channels used) Jan/Feb	SSI/GSI	SSI Assim. Testing complete, GSI testing current.
AURA OMI	GSI	Total ozone successfully assimilated, still testing
AMSR (E)	GSI	Currently cycling in GSI, impacts positive.


New observational data sets (planned)



- Met-8 Winds
- GPS IPW
- GOES 1x1 replaces GOES 5x5
 - Unique RTA for each detector

Three Dimensional Air Quality Mapping System

- Understand the mechanisms behind AOD/PM2.5 correlations
- Fill temporal and spatial gaps to study the linkages between poor air quality and human health
 - GEOSS effort led by EPA
 - NESDIS an active coinvestigator
 - Initial study will focus on 2001 data. In future, ten years of GOES AOD data will be integrated with ground observations for health impact studies in New York and Boston

NESDIS

- Algorithm development to begin in 2006
- OMI DOAS algorithms will be employed, tested, and implemented
- Products will be made available in NRT in 2008
- Products will be available at 40 X 40 km² spatial resolution

Product	User	Application
NO2	EPA NWS	 Assessments Constrain NOx emissions in air quality forecast model Verification of precursor forecast fields
Н2СО	EPA NWS	 Assessments Constrain isoprene emissions in air quality forecast model Verification of precursor forecast fields
Ozone	NWS	Ozone forecast improvements
Aerosol optical Depth (absorption vs scattering)	EPA <mark>NWS</mark> NESDIS	 PM2.5 Monitoring PM2.5 and ozone forecast improvements Hazard Mapping System
Volcanic SO2	NESDIS	Hazard Mapping System

NPP Capable EDRS

(green – alternative sensor from NPP)

	1	2
1	EDR	Sensor
2	Atmospheric Vertical Moisture Profiles	CrIMSS, ATMS
3	Atmospheric Vertical Temperature Profiles	CrIMSS, ATMS
4	Sea Surface Temperature	VIIRS
5	Aerosol Optical Thickness	VIIRS
6	Aerosol Particle Size	VIIRS
7	Aerosol Refractive Index	VIIRS
8	Albedo (Surface)	VIIRS
9	Cloud Base Height	VIIRS, CMIS
10	Cloud Cover/Layers	VIIRS
	Cloud Effective Particle Size	VIIRS
12	Cloud Ice Water Path	CMIS ATMS
13	Cloud Liquid Water	CMIS ATMS
14	Cloud Optical Thickness	VIIRS
15	Cloud Top Height	VIIRS
	Cloud Top Pressure	VIIRS
	Cloud Top Temperature	VIIRS
	Down LW Radiance (sfc)	ERBS, CrIS
	Down SW Radiance (sfc)	ERBS, CriS
	Ice Surface Temperature	VIIRS
	Land Surface Temperature	VIIRS
	Ocean Color	VIIRS
23	Outgoing LW (TOA)	ERBS, CrIS
	Ozone total column profile	OMPS, CrIS
25	Precipitable Water	VIRS, CMIS CrIMSS, ATMS
26	Precipitation Type/Rate	CMIS, ATMS
	Pressure (surface/profile)	CrIMSS, ATMS
	Sea Ice Characterization	CMIS, ATMS
29	Snow Cover/Depth	CMIS, ATMS
	Surface Type	VIRS, CMIS, CrIS ATMS
	Active Fires	VIRS
32	Suspended Matter	VIIRS
33	Total Water Content	CMIS, ATMS, CrIS