

## KONGSBERG

#### **MEOS POLAR**

A Cost Effective Direct Broadcast Terminal for Current and Future

L- and X-Band Polar Orbiting Satellites

Einar Grønås, Dr. Frank Øynes Kongsberg Spacetec AS

ITSC-14 Beijing 25-31 May 2005

WORLD CLASS - through people, technology and dedication









# This talk is about getting access to the satellite data by DIRECT BROADCAST (Direct Readout)



- Direct Broadcast Receiving Stations Worldwide
- •DNMI (met.no) Receiving Station
- Contractor/Operator for Svalbard Station
- •EPS (METOP) Reference User Station (RUS), Product Generating Facilities (PGF) and Front End Processors (FEP) Contractor
- •NASA Ground System Interface processing Facility (GSIF) contractors for Svalbard and GSFC
- •Owned by Kongsberg Defence and AeroSpace

•25 years

Colocated with the Tromsø Station (KSAT)



•Mission specific systems and operational concept for each mission - cost issues

- •Proprietary algorithms inconsistent calibration
- •Proprietary hardware and software hard to modify and maintain
- •Proprietary data formats -interoperability issues
- •Manual operation this is some places expensive
- •Auxiliary data management time and cost issues
- •Short term and long term archiving usability issues cost
- •Access to data (catalogue and distribution) usability
- •Maintenance and sustained support cost issues

# •Limited budgets



- A multi-mission and user configurable system for acquisition, archiving, processing, analysis and distribution of direct broadcast satellite data from polar orbiters.
  - $\mathsf{NOAA}$
  - METOP
  - TERRA
  - -AQUA
  - SeaWiFS
  - -FY-1
- Fully automatic (all tasks) the operator makes the rules and the system performs according to the rules as long as the operator has defined
- Built to meet the challenges

# Satellites, sensors and transmissions supported by MEOS POLAR



| Polar Orbiting<br>Satellites | NOAA | МЕТОР | SeaStar | FY-1  | TERRA and<br>AQUA |
|------------------------------|------|-------|---------|-------|-------------------|
| Transmissions                | HRPT | HRPT  | HRPT    | CHRPT | Direct Broadcast  |
|                              |      |       |         |       |                   |
| Sensors                      |      |       |         |       |                   |
| AVHRR                        | +    | +     |         |       |                   |
| AVHRR/3                      | +    | +     |         |       |                   |
| SeaWiFS                      |      |       | +       |       |                   |
| TOVS                         | +    |       |         |       |                   |
| ATOVS                        | +    | +     |         |       |                   |
| MVISR                        |      |       |         | +     |                   |
| MODIS                        |      |       |         |       | +                 |
| AIRS                         |      |       |         |       | +                 |
| AMSU-A                       |      |       |         |       | +                 |
| HSB                          |      |       |         |       | +                 |



#### **MEOS POLAR - Design**





### MEOS POLAR - Station Control System GUI

The GUI visualizes the status of the automatic operation. Some of the key components include:

Schedule Display Activity Display Event Log Station Overview Telemetry Viewer

It is a Java program





- Standardization of level 1 processing packages
  - one and only one per instrument
  - -sustained interface specifications
  - International collaboration
- Improved automation more "invisible" to data users
- Improved designs less cost
- Networked Operations vs Direct Broadcast low cost stations will support Direct Broadcast
- Support Future satellites (NPP, NPOESS, FY-3)

#### **MEOS POLAR**





# Please visit us at www.spacetec.no Poster B49



#### **MEOS View visualisation tool**

- Is a standard feature in the Basic Package.
- Designed for use within operational environment where speed is essential. Efficiency and simplicity are key features of the intuitive Graphical User Interface (GUI).
- Can produce and playback animations, print, overlay geographical, meteorological, oil spill, ship and wind information and. Images can be annotated with text and meteorological symbols.





#### MEOS POLAR - Level 1 processing

- AAPP up to level 1b (AVHRR)
- AAPP (ATOVS)
- IMAPP (MODIS, AIRS, AMSU, HSB)
- OGP and SeaDAS (SeaWIFS)
- Integrated for operation in automatic production chain



- Multi sensor
- Multi projection from publicly available Proj4
- MODIS bowtie correction based on specific MODIS geometry
- Input and output data are managed by the MEOS Rolling archive
- Format: HDF5





- The METOP satellite launches in April 2006
- KSPT's METOP system is based on our
  MEOS and RUS- Reference User Station, developed for EUMETSAT's Polar System (EPS) Core Ground Segment

The METOP processing system will consist of 4 main elements:

- Front End System
- Basic Package
- Advanced Package
- Host Computer



### **MEOS POLAR for METOP - Dissemination**

#### Front End Equipment

- L/X-band tracking antenna with
  - feed/downconverter
  - Digital receiver/bitsynchroniser
  - Satelitte Tracking controller
  - Systems cables





#### MEOS POLAR for METOP

MEOS POLAR for METOP - Basic Package





#### **Subsystems**

FEP

Controls Frame synchroniser board

Decrypt

decrypt METOP HRPT/LRPT VCDUs. The SKU must be physically connected to the host computer through a RS422 connection. The key files are in XML format Decrypt

Recontruct

Reads VCDUs and contructs Instrument Source Package, and also perform packet error control on the ISP



#### **Subsystems**

ADM message handler

Handles METOP Adm. Messages, writing OSV to disk and extracts METOP event messages

#### QLP

Subsamples and reformats all received data and distribute the result on a network connection. The distributed data can be displayed in real time by a stand alone Java Quick Look Viewer (QLV)

#### LOPP

The METOP level 0 Pre-processor subsystem. Already reads ad selects the OBT/UTC auxdata file

#### LOFF

Level 0 product File Formater subsystem reads and selects the OSV audata file from ADM Messages from the downlink datastream



#### Subsystems

#### METOP SIP

Same functionality for generating HDF-5 products as for the NOAA SIP, but taking METOP AVHRR L0 products as input. No level 1b files generation.

#### FTP

capable of transferring files between any two hosts in the network. Normally it is set up to transfer data to specified hosts after subsystems storing data in a format of general interest. The user may select whether it shall be included in the processing chain or not.

#### Browse

Generates browse products (jpeg) and meta data (ASCII) from level 0 data (NOAA and METOP).



#### Subsystems

- Export
  - Export HDF5 products to JPEG, PPM and PNG with user specified channel combinations, colour tables, overlays and legends.

#### MEOS POLAR - Advanced Package



Value added products for NOAA/METOP

Sea Surface Temperature **Cloud Top Temperature Cloud Top Height Cloud Top Pressure Cloud Amount** Cloud Mask **Cloud Image Cloud Type Hot Spot Detection Precipitation Index Normalised Difference Vegetation** Index **Cloud Classification** 

Value Added Products for MODIS **Cloud Mask Product Aerosol Product Precipitable Water** Product Cloud Product **Atmospheric Profile Product Surface Reflectance Product Snow Cover Product Thermal Anomalies Product** 

The end



# Please visit us at

# www.spacetec.no