Dust aerosol optical depth and altitude from AIRS and comparison with other A-Train observations (MODIS, CALIPSO)

Sophie Peyridieu¹, Alain Chédin¹, <u>Raymond Armante¹</u>, Clémence Pierangelo² sophie.peyridieu@Imd.polytechnique.fr

¹Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France Analyse du Rayonnement Atmosphérique (http://ara.lmd.polytechnique.fr) ² CNES, Toulouse, France

International TOVS Study Conference Angra dos Reis, Brazil

12 May 2008

Why study aerosols ?

- \rightarrow Aerosols are a key component of the troposphere
- \rightarrow Strong effects on climate :
 - Direct effects on radiation : parasol effect, greenhouse effect
 - Indirect effects : Cloud Condensation Nuclei (<u>CCN</u>), clouds,

precipitations...

Aerosols radiative forcing : -2.0 to + 0.2 $W.m^{-2}$ (global estimation IPCC 2007)

→ High variability of types, spatial and time distribution, particles shape and size

This study will focus on dust aerosols

1. Context

Impact of aerosol microphysics

Ongoing studies :

A majority of studies is still carried on in the visible part of the spectrum, whereas aerosols have an effect in both the visible and the infrared !

Complementarity infrared / visible :

	on			
VISIBLE / Near IR (around 0.55 µm) :	4	aerosol optical properties :		
Sensitive to small particles (i.e. carbonaceous aerosols, biomass burning, dust -accumulation mode)	High	Size distribution	Refraction indices	
	Moderate	Shape	Size distribution	
INFRARED (around 10 µm) : Sensitive to large particles	Low	Refraction indices	Shape	
(i.e. dust -coarse mode)		VISIBLE / Near IR	INFRARED	

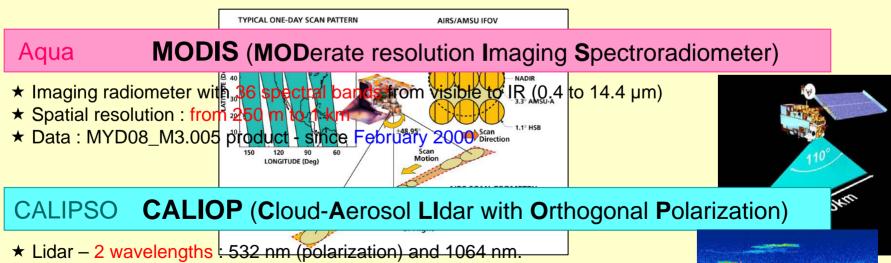
Importance of infrared radiation to aerosols remote sensing :

- Allows retrieval of mean altitude
- Day and night observations (not possible in the visible)
- Observation over deserts

Aqua

2. Data and methods

3. Results


4. Conclusion

Data from spaceborne observations :

AIRS (Atmospheric Infrared Sounder)

- ★ 2378 spectral channels spectrometer bands 3.7 to 15.4 µm
- ★ Spectral resolution : 0.5 to 2 cm-1 Spatial resolution : 13.5 km at nadir
- ★ 324 channels archived at LMD Data from January 2003 to present

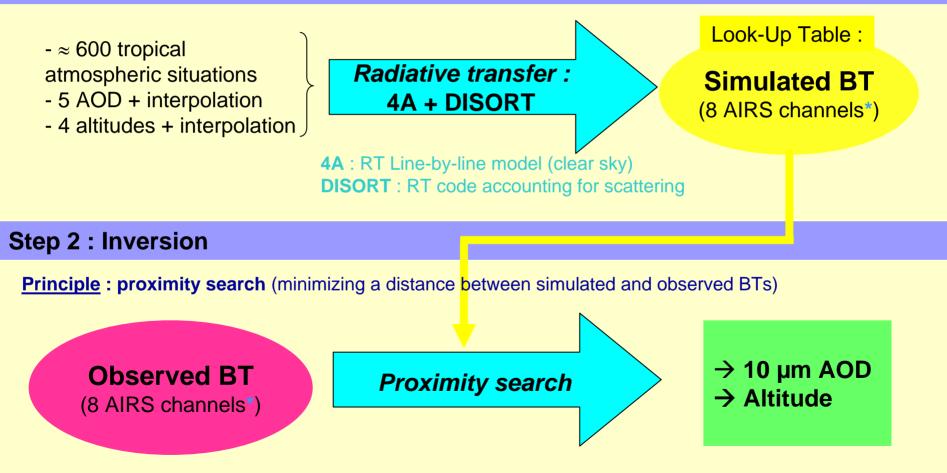
- \star Vertical resolution : 30 to 60 m Horizontal resolution : 333 m.
- ★ Data : Level 2 Cloud/Aerosol Layer product since June 2006.

Aerosols products :

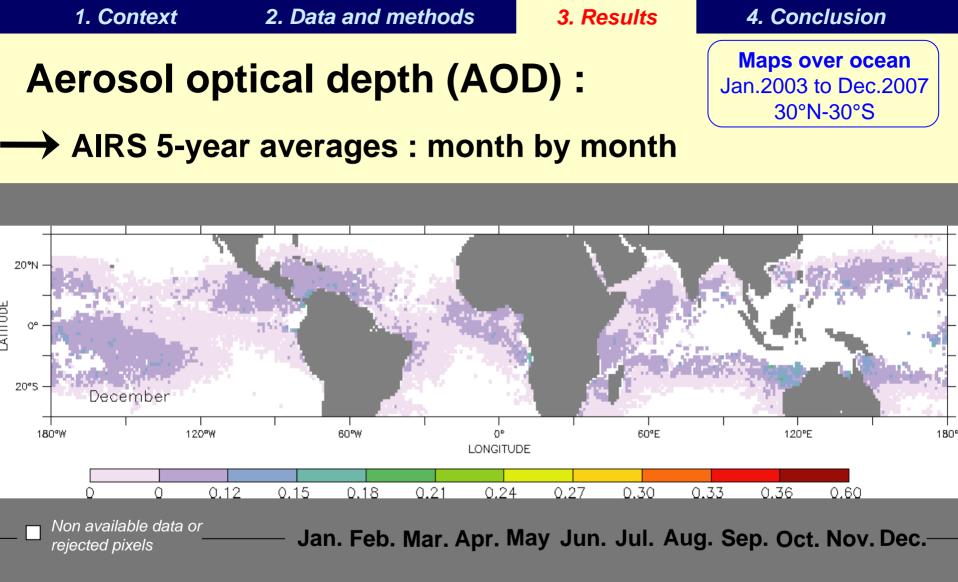
\rightarrow Retrievals from our study :

	AOD	Altitude	Time period
AIRS	Available over ocean	Available over ocean	Jan.2003 to Dec.2007
(10 μm)	In progress over land*	In progress over land*	

\rightarrow Data used for validation :


	AOD	Altitude	Time period
MODIS (0.55 μm)	Available ocean + land <i>(except on deserts)</i>		Feb.2000 to Mar.2008
CALIOP (532 nm)	Available ocean + land (latest release v2.01)	Available ocean + land	Jun.2006 to Feb.2008

* cf. surface emissivity maps developed by Eric Péquignot (Pequignot et al., J.Appl.Meteor.Climatol., in press)


Inversion method : a « Look-Up Table » approach

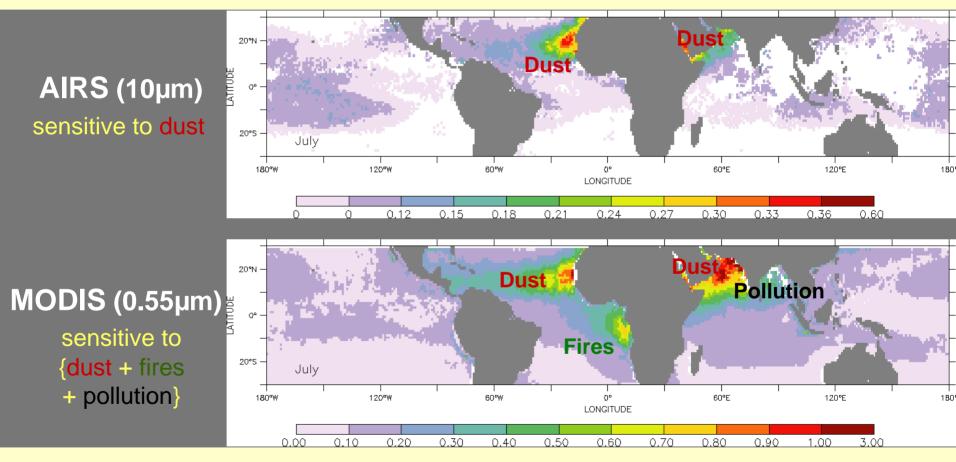
More details in [Pierangelo et al., ACP 2004]

Step 1 : Off-line calculation of the Look-Up Tables

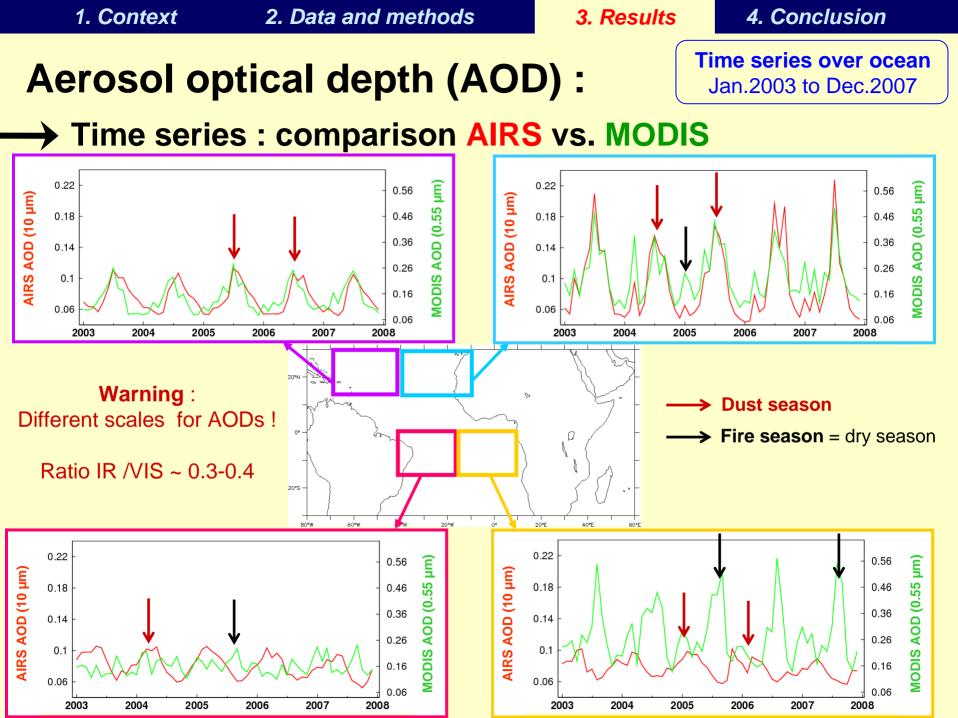
* 8 channels selected for their sensitivity to dust and mid-troposphere

AIRS at 10 µm : sensitive to dust

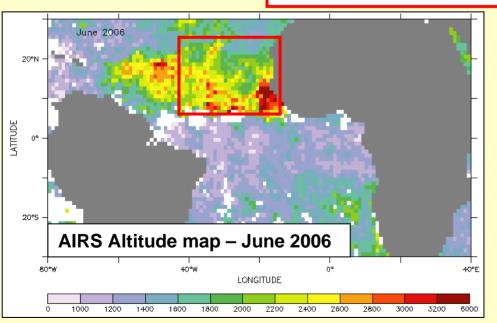
1. Context 2. Data and methods


3. Results

4. Conclusion

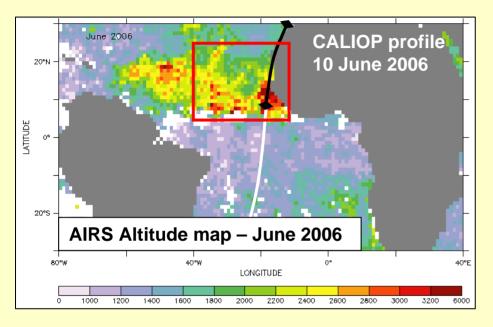

Aerosol optical depth (AOD) :

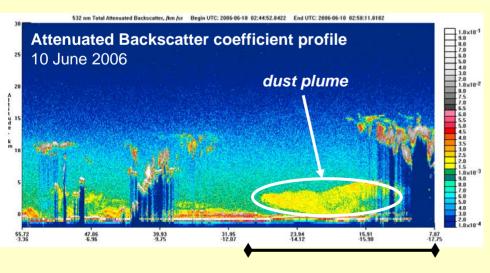
Maps over ocean Jan.2003 to Dec.2007 30°N-30°S


July (5-year average) : peak of Northern Hemisphere dust season

→ Very interesting coupling between AIRS (10 µm) and MODIS (0.55 µm)towards a « deconvolution » of dust and biomass burning aerosols signals

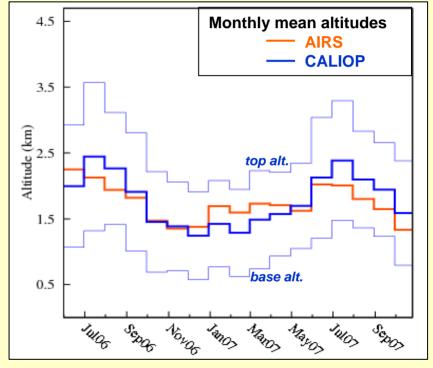
Mean altitude 3500 lat [5N-25N] ; lon [40W-10W] $\overline{\sigma}$ = 303 m 3000 daily value E MODIS : cannot retrieve 2500 monthly $\pm \sigma$ Altitude altitude... 2000 AIRS : Vertical sounder. AIRS 1500 (Each channel has a weighting function and « peaks 1000 at a different altitude) monthly mean 500 Jan-2003 Jan-2004 Jan-2005 Jan-2006 Jan-2007 Jan-2008


This time series shows :


> Daily variability and seasonal cycle

> As reported by [Chiapello et al., 2002], [Maring et al., 2003] : Summer transport is generally observed higher (SAL : « Saharan Air Layer ») than winter transport (MBL : « Marine Boundary Layer »)

A-Train Synergy → Validation with CALIOP Lidar onboard CALIPSO


Mean altitude : validation with CALIOP Lidar data

Comparison AIRS / CALIOP :

CALIOP data restricted to 1 layer cases

mean error = 47 mstandard deviation = 230 m

→ Remarkable agreement between CALIOP active lidar and AIRS passive sounder. 1. Context

2. Data and methods

3. Results

4. Conclusion

Conclusion

- ✓ Infrared remote sensing brings new variables : altitude, r_{eff} ...
- Complementarity visible / infrared :

Possible deconvolution between different types of aerosols (biomass burning / dust) and different modes of the dust (accumulation mode / coarse mode)

✓ <u>Results obtained from 5 years of AIRS observations over</u> the tropical region :

Optical depth (AOD) : Good agreement with MODIS Mean altitude : Remarkable agreement with CALIOP [Peyridieu et al., in review]

Perspectives

- → AIRS data : retrieval over land (in progress)
- → Validation with CALIOP : Altitude and AOD (in progress)
- → Process data from IASI (launched Oct. 2006 onboard Metop)

Thank you