ITSC XVI Angra dos Reis, 7-13 May 2008

Midtropospheric CO₂ Concentration derived from infrared and microwave sounders. Application to the TOVS, AIRS/AMSU, and IASI/AMSU instruments.

Cyril Crevoisier, Alain Chédin, Noëlle A. Scott, Gaelle Dufour, Raymond Armante and Virginie Capelle

Laboratoire de Météorologie Dynamique, CNRS, IPSL, Palaiseau

CO₂ from infrared/microwave sounders

	NOAA10	NOAAk	Aqua	MetOp
	TOVS	ATOVS	AIRS/AMSU	IASI/AMSU
Time coverage	1987-1991	1999-2005	May 2002	Oct. 2006
Spectral resolution			0.5 - 2 cm ⁻¹	0.5 cm ⁻¹ (apodized)
# IR/MW	19/4	19/15	2378/1 <mark>5</mark>	<mark>8461/15</mark>
channels			(324/15)	(421/15)
Local time	7.30	7.30	1.30	9.30

CO₂ seasonal cycle - Northern tropics [0-20°N]

- •NOAA10: Chédin et al., JGR, 2003, 2008.
- •NOAA15: Very preliminary results...
- •AIRS: Crevoisier et al., GRL, 2004.

CO₂ seasonal cycle - Northern tropics [0-20°N]

Sensitivity of IASI T_B to variations of atmospheric and surface variables (simulations with the 4A RT model)

Sensitivity of IASI T_B to variations of atmospheric and surface variables (simulations with the 4A RT model)

Sensitivity of AIRS and IASI channels in the two CO₂ bands (simulations with the 4A RT model)

Jacobians of two "CO2" AIRS channels

•Channels at $4\mu m$ peak lower in the atmosphere.

Jacobians of two "CO2" AIRS channels and AMSU weighting functions

•Channels at $4\mu m$ peak lower in the atmosphere.

•AMSU channels bring the information on temperature.

 CO_2 channel selection

•Aqua AIRS/AMSU:

-15 AIRS channels (8 in the 15 μ m band - 7 in the 4 μ m band).

-2 AMSU channels (6 and 8).

•MetOp IASI/AMSU:

-14 IASI channels (all in the 15 μ m band).

-3 AMSU channels (6, 7, and 8).

Colocation of radiosoundings/re-analyses ERA40 with IR/MW observations

AIRS Radiative biases: Monthly evolution (5 years over the tropics)

~60 situations/month over sea ~30 situations/month over land

AIRS Radiative biases: Monthly evolution (5 years over the tropics)

"CO₂" slopes (mean over 5 years): AIRS 80: 2.16 ppmv.yr⁻¹ AIRS 264: 2.39 ppmv.yr⁻¹ Mauna Loa: 2.05 ppmv.yr⁻¹

~60 situations/month over sea ~30 situations/month over land

General features of the CO₂ retrieval scheme : non-linear regressions

•Simultaneous use of IR and MW channels to decorrelate T/CO₂. IASI AMSU

•Retrieval limited to the tropical region.

[Chédin et al., JGR, 2003; Crevoisier et al., GRL, 2004]

Evaluation of the inference scheme characteristics

We retrieve a mid-to-upper tropospheric integrated content of CO_2 .

Mean **CO₂ averaging kernel** over TIGR atmospheric dataset for nadir observation

CO₂ distribution from AIRS and IASI - Monthly average

Evaluation of IASI CO2

JAL commercial airliners between Australia and Japan

•Aircraft [Matsueda et al.] -8-10 km -1-2 points/month -until March. 2007

•IASI CO₂

-integrated content 5-15 km -monthly mean

-period: July 2007-March 2008

Seasonal cycle

Detrended CO₂ seasonal cycle as observed in situ by JAL aircraft for 2003-2006

Seasonal cycle

Detrended CO₂ seasonal cycle as observed in situ by JAL aircraft for 2003-2006

Latitudinal variation

*CO*² *latitudinal variation in July*

Conclusions

•We retrieve a mid-to-upper tropospheric integrated content of CO₂ from simultaneous IR/MW observations (TOVS, ATOVS, AIRS/AMSU, IASI/AMSU).

•The CO₂ signal is very low:

The full information contained in the channels is needed (that excludes using PCA-like data).

•Good agreement of CO_2 distribution between IASI and AIRS but lower variability/uncertainty with IASI:

-Reducing radiometric noise is as important as improving spectral resolution.

-A "good" AMSU instrument is important.

•General good agreement with in-situ observation in terms of seasonal cycle and latitudinal gradients.