

Potential of CO₂ retrieval from IASI

L. Chaumat, O. Lezeaux, P. Prunet, B. Tournier

F.-R. Cayla (SISCLE), C. Camy-Peyret (LPMAA) and T. Phulpin (CNES)

Study supported by CNES

ITSC-XVI: Angra dos Reis, Brazil, 7-13 May 2008

The Infrared Atmospheric Sounding Interferometer (IASI) is one of the potential instruments for monitoring atmospheric CO₂ from space

Efficient extraction of the CO₂ signal from the IASI spectrum: specific data processing algorithm

 Quantitative analysis of the information content for the definition and specification of an optimal product

First validation of the retrieval on IASI spectra

The atmospheric spectrum measured by IASI exhibits a quasi-periodic line structure

- Atmospheric spectrum re-sampling on a periodic base built from the spectral transitions of the CO₂ lines
- Application of a Discrete Fourier Transform (DFT) to 16 specific spectral windows

Characteristics of the selected spectral windows

Window designation	Representative wave number (cm ⁻¹)	Limits (cm ⁻¹)	Number of spectroscopic lines	Number of corresponding IASI samples (N)	
W1	655.0	648.8882 - 661.1602	9	51	
W2	682.3	671.2947 - 693.58422	15	91	
W3	709.0	699.4146 - 718.4578	13	78	
W4	736.3	725.47314 - 746.8401	15	88	
W5	754.3	748.34204 - 760.2727	9	50	
W6	804.7	796.9102 - 812.48413	11	64	
W7	946.1	934.89453 - 956.1851	13	87	
W8	974.8	966.25024 - 982.0955	13	65	
W9	1048.9	1035.474 - 1060.571	15	103	
W10	1077.6	1066.0373 - 1086.87	17	85	
W11	2058.2	2047.512 - 2069.0693	15	88	
W12	2111.8	2105.5544 - 2118.0332	9	52	
W13	2267.0	2251.681 - 2280.33	17	117	
W14	2360.3	2349.9172 - 2369.0854	15	79	
W15	2412.7	2397.048 - 2426.209	17	118	
W16	2441.8	2433.176 - 2449.064	13	66	

Signal to noise ratio (SNR) for the mean signal of DFT compared to the SNR in the spectrum space

Windows	DFT SNR	DFT SNR / √N	Spectrum SNR	Windows	DFT SNR	DFT SNR / √N	Spectrum SNR
W1	1074.8	150.5	138.0	W9	1815.9	178.9	173.7
W2	150.5	142.3	165.2	W10	2559.6	277.6	283.1
W3	138.0	206.7	206.0	W11	831.3	88.6	71.2
W4	1357.7	282.7	216.9	W12	647.6	89.8	94.4
W5	142.3	358.9	296.0	W13	57.8	5.3	3.3
W6	165.2	323.4	333.0	W14	64.8	7.3	9.8
W7	1825.5	312.3	304.6	W15	1076.4	99.1	103.1
W8	206.7	300.8	296.3	W16	689.9	84.9	89.6

The Fourier space analysis method allows information merging by increasing the SNR with a factor \langle N (number of window samples)
 The pseudo-data equivalent to super-channels: data compression

1-DVAR information content analysis

Studies from

- Synthetic spectra and Jacobians (4A/OP, poster A11)
- ✓ Specific set of real IASI spectra

$y \equiv IASI$ spectrum or pseudo-data

- IASI data CO₂ channel selection:
 1282 spectral samples (SEL)
- IASI pseudo-data: 48 elements
 (3 harmonics × 16 windows) (DFT)

Extended retrieval studies for

- \checkmark Specification of the retrieval strategy
- Definition of the optimal product
- Optimisation of the data processing

Specific IASI data set : external calibration mode

cnes

Redundancy of IASI pixels acquisition at a given location

Noveltis

Retrieval strategy

- Different parametrisation tests
 - ✓ CO₂ plus surface temperature (T₅)
 - ✓ CO₂, T_s plus column of contaminating species
 - CO₂, T_S plus profiles of contaminating species
 - CO₂, T₅, plus proper transport of species profile errors

Definition of the optimal product : retrieval error

- \checkmark CO₂ mean VMR : 2.3 ppmv, driven by measurement error
- 2 pieces of information profile : tropo: 5 ppmv, strato: 10 ppmv
- 3 pieces of information profile : low tropo: 35 ppmv, high tropo: 10 ppmv, strato: 15 ppmv

Definition of the optimal product : weighting function

Time series of CO₂ retrieval from IASI data set: optimisation of processing

Noveltis

cnes

Summary (Analysis from simulated and 25 real IASI data)

- ✓ CO₂ mean VMR, as well as CO₂ stratospheric and tropospheric partial VMR, can be retrieved from IASI spectrum with a reasonable accuracy
- \checkmark An optimised processing for the CO2 retrieval is defined :
 - DFT data processing ensures efficient and stable retrieval via information compression and filtering
 - $> CO_2$ is retrieved simultaneously with surface information
 - T/H₂O auxiliary information from IASI retrieval should be used (no optimal in our experiments)
 - > Trace gases error is properly considered
- ✓ A full product characterisation is provided by the retrieval algorithm (error estimate, weighting function)

- Work in progress
 - Extended validation on IASI data
 - Global statistics obtained from about 800 inversions on homogeneous scenes classified as "clear over sea" at different locations compared to the theoretical analysis
 - Noise retrieval (precision: relative standard deviation)

Method	DFT			SEL					
CO ₂ product	The	ory	Measures		Theory		Measures		
VMR	1.14	4 %	0.8	0.89 %		0.72 %		0.50 %	
2 layers (TR-ST)	2 %	5.5 %	2.8 %	5.8 %	1.5 %	3.5 %	2.5 %	9.7 %	

- These preliminary results confirm previous results:
 - The DFT method needs to be optimised for the mean VMR
 - The DFT method is more robust and stable to retrieve 2 pieces of information profile

Outlook

Work to be done

- Extended validation on a representative data set
- Impact studies of IASI CO₂ product through inverse modelling
- ✓ Possibility to improve CO₂ product through spatial and temporal averaging or specific processing
- Coupling with efficient cloud processing to increase the availability of IASI accurate information
 Poster B04: "Processing of IASI heterogeneous scenes"