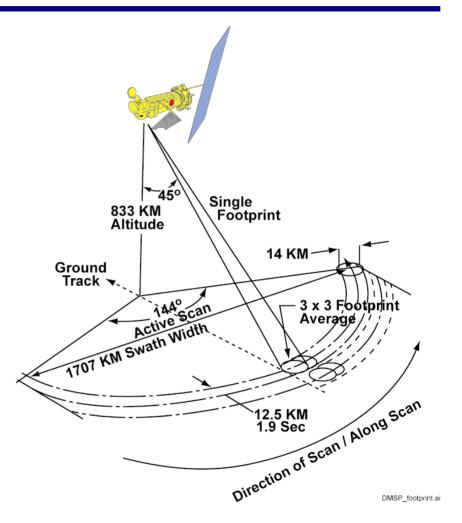
Environmental Data Records from Special Sensor Microwave Imager and Sounder (SSMIS)


Fuzhong Weng

Center for Satellite Applications and Research National Environmental, Satellites, Data and Information Service National Oceanic and Atmospheric Administration

> The 16th International TOVS Study Conference Angra dos Reis, Brazil, May 7-13, 2008

SSMIS Instrument Characteristics

- The Defense Meteorological Satellite Program (DMSP) successfully launched the first of five Special Sensor Microwave Imager/Sounder (SSMIS) on 18 October 2003.
- SSMIS is a joint United States Air Force/Navy multi-channel passive microwave sensor
- Combines and extends the current imaging and sounding capabilities of three separate DMSP microwave sensors, SSM/T, SSM/T-2 and SSM/I, with surface imaging, temperature and humidity sounding channels combined.
- The SSMIS measures partially polarized radiances in 24 channels covering a wide range of frequencies (19 183 GHz)
 - conical scan geometry at an earth incidence angle of 53 degrees
 - maintains uniform spatial resolution, polarization purity and common fields of view for all channels across the entire swath of 1700 km.

- NESDIS receives and distributes DMSP F-16/17 SSMIS Temperature Data Record (TDR) from FNMOC (original without anomaly correction)
- NESDIS also receives F16 SSMIS SDR data in BUFR format from FNMOC (with NRL/UK UPP-v2 anomaly correction)
- NESDIS/STAR developed its experimental anomaly correction scheme and applied to the original SSMIS TDR data
- All above mentioned data sets are available from NESDIS/OSDPD or NESDIS/STAR upon request

Thank Steve Swadley for providing F16 satellite antenna pattern correction coefficients at TDR level and linear-mapping coefficients for converting SSM/IS imaging channels to SSM/I-like channels at SDR level

SSMIS Heritage Products and *New Developments*

Heritage

- Total Precipitable Water
- Cloud Liquid Water
- Sea Surface Wind Speed
- Rain Rate
- Snow Cover
- Sea Ice Concentration

Experimental

- Land Surface Temperature
- Land Surface Emissivity
- Cloud Ice Water Path
- Atmospheric Temperature
- Atmospheric Moisture

Visit website for SSMIS Products Demonstration: http://www.orbit.nesdis.noaa.gov/smcd/jcsda/SDS

Also see:

Sun, N., and F. Weng, 2008: Evaluation of Special Sensor Microwave Imager and Sounder (SSMIS) Environmental Data Record, IEEE Trans. Geosci. and Remote Sens., 46, 1006-1016

Yan, B., and F. Weng, 2008: Intercalibration between Special Sensor Microwave Imager and Sounder (SSMIS) and Special Sensor Microwave Imager (SSM/I), IEEE Trans. Geos. and Remote Sens., 46, 984-9 95

Alishouse, J.C., S. A. Snyder, J. Vongsathorn, and R. R. Ferraro, "Determination of Oceanic Total Precipitable Water from the SSM/I," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 28, pp. 811-816, Sep 1990.

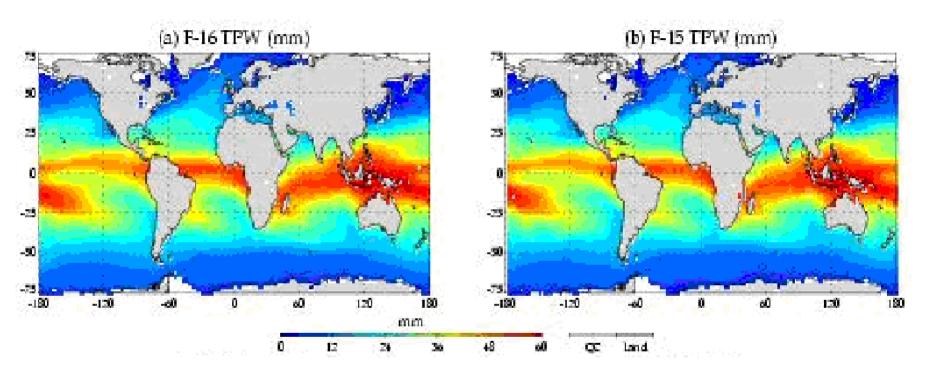
Algorithm Description:

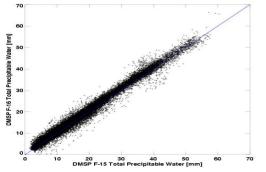
 $TPW = 232.89 - 0.1486(TB_{_{19\nu}}) - 0.3695(TB_{_{37\nu}}) - [1.8291 - 0.006193(TB_{_{22\nu}})]TB_{_{22\nu}}$

Calculate Scattering Index for rain areas

$$SI = EST_{TB_{85v}} - TB_{85v}$$

$$EST_{TB_{85v}} = \begin{cases} 438.5 - 0.46(TB_{19v}) - 1.735(TB_{22v}) + 0.00589(TB_{22v})^2, & land \\ -182.7 - 0.75(TB_{19v}) + 2.543(TB_{22v}) - 0.00543(TB_{22v})^2, & ocean \end{cases}$$

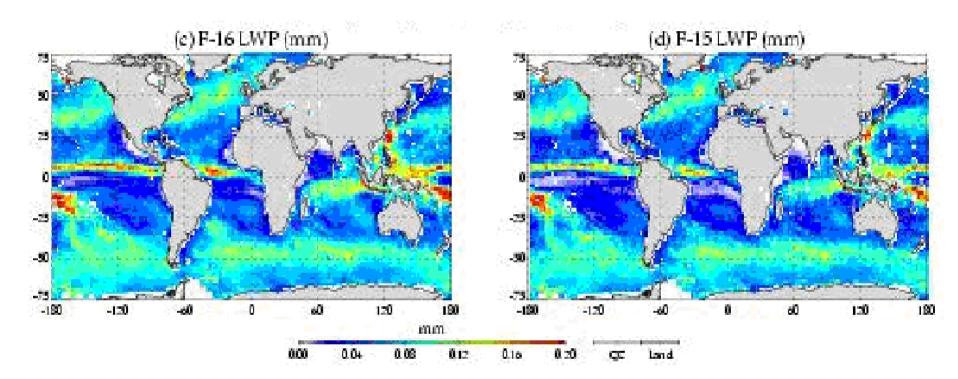

When Scattering Index is greater than 10K over ocean, which means rain is present, cubic correction is made to original TPW.


 $TPW_{corrected} = -3.753 + 1.507(TPW) - 0.1933(TPW)^{2} + 0.00219(TPW)^{3}$

Heritage Algorithm (TPW)

June 25, 2008

NESDIS SSMIS Products


- Weng, F. and N. C. Grody, "Retrieval of Cloud Liquid Water Using the Special Sensor Microwave Imager (SSM/I)," *Journal of Geophysical Research-Atmospheres*, vol. 99, pp. 25535-25551, Dec 20 1994
- Weng, F., N. C. Grody and R. R. Ferraro and A. Basist and D. Forsyth, 1997: Cloud liquid water climatology derived from the Special Sensor Microwave Imager. J. Climate, 10, 1086-1098.

Algorithm Description:

$$LWP = \begin{cases} -3.20[\ln(290 - TB_{19\nu}) - 2.8 - 0.42\ln(290 - TB_{22\nu})], & LWP > 0.7 \\ -0.44[\ln(290 - TB_{85h}) - 1.6 + 1.35\ln(290 - TB_{22\nu})], & LWP > 0.28 \text{ and } TPW < 30 \\ -1.66[\ln(290 - TB_{37\nu}) + 2.9 + 0.35\ln(290 - TB_{22\nu})], & else \end{cases}$$

Heritage Algorithm (LWP)

Ferraro, R.R. and G. F. Marks, "The Development of SSM/I Rain-Rate Retrieval Algorithms Using Ground-Based Radar Measurements," *Journal of Atmospheric and Oceanic Technology*, vol. 12, pp. 755-770, Aug 1995.

Algorithm Description:

Over Land

$$SI = EST_{TB_{85v}} - TB_{85v}$$
$$EST_{TB_{85v}} = \begin{cases} 438.5 - 0.46(TB_{19v}) - 1.735(TB_{22v}) + 0.00589(TB_{22v})^2, & land \\ -182.7 - 0.75(TB_{19v}) + 2.543(TB_{22v}) - 0.00543(TB_{22v})^2, & ocean \end{cases}$$

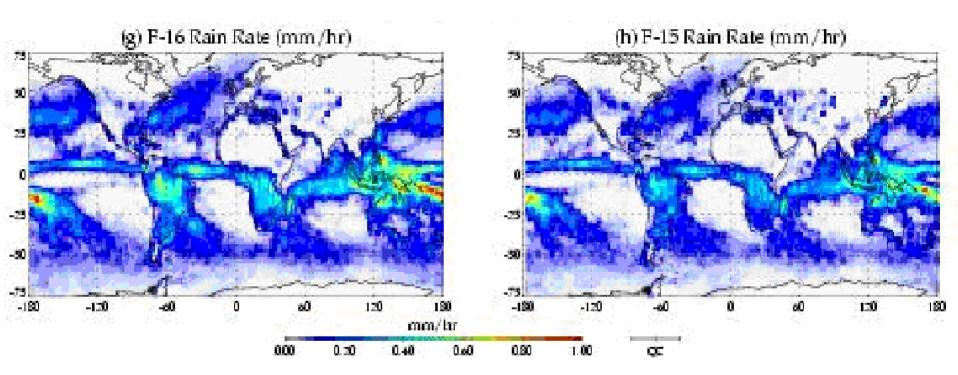
When Scattering Index is greater than 10K

$$RR = 0.00188 * SI^{2.03434}$$

Over oceans

 $Q_{19} = -2.70*[Ln(290-TB_{19\nu}) - 2.8 - 0.42*Ln(290-TB_{22\nu})], \quad TB_{19\nu} < 285, TB_{22\nu} < 285$ $Q_{37} = -1.15*[Ln(290-TB_{37\nu}) - 2.9 - 0.349*Ln(290-TB_{22\nu})], \quad TB_{37\nu} < 285, TB_{22\nu} < 285$ If Q₁₉ is greater than 0.6,

 $RR = 0.001707 * (Q_{19} * 100)^{1.7359}$


If Q_{37} is greater than 0.2,

 $RR = 0.001707 * (Q_{37} * 100)^{1.7359}$

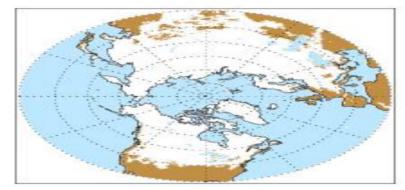
Heritage Algorithm (RR)

Grody, N,C. and A. N. Basist, "Global identification of snowcover using SSM/I measurements," *Ieee Transactions on Geoscience and Remote Sensing*, vol. 34, pp. 237-249, Jan 1996

Algorithm Description:

Calculate index: Index $1 = TB_{22v} - TB_{85v}$ Index $2 = TB_{19v} - TB_{37v}$ Index $3 = TB_{19v} - TB_{19h}$ Index $4 = TB_{37v} - TB_{85v}$

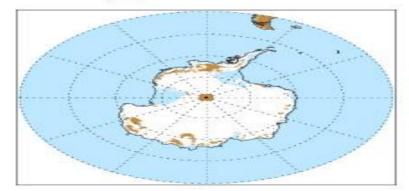
If Index 2 is greater than Index1, Index1 is set to Index2. If Index 1 is greater than 0, snow is present. However, error is corrected under following four conditions,


 $TB_{22\nu} >= 254 \& Index1 < 2 \qquad TB_{22\nu} >= 258 \parallel TB_{22\nu} >= (165 + 0.49 * TB_{85\nu})$ Index1 <= 6 & Index3 >= 8 Index3 >= 18 & Index2 <= 10 & Index4 <= 10

NORR

(a) F-16 Snow Cover

(b) F-15 Snow Cover



(c) F-16 Snow Cover

Silon

(d) F-15 Snow Cover

Land

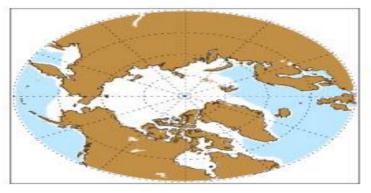
C C

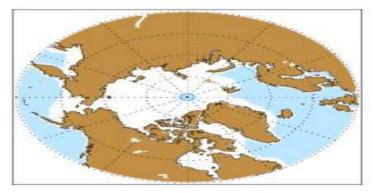
13

Ferraro, R. R., F. Weng, N. Grody, and A. Basist, 1996: An eight year (1987-1994) time series of rainfall, clouds, water vapor, snow and sea ice derived from SSM/I measurements, *Bull. Amer. Meteor. Soc.*, 77, 891-905.

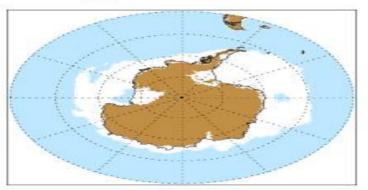
Algorithm Description: For area north of 44.4^oN and south of 52.0^oS

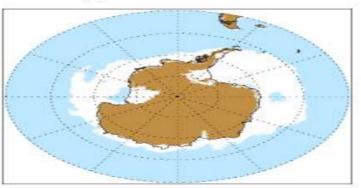
$$ICE = 91.9 - 2.99 (TB_{22v}) + 2.85 (TB_{19v}) - 0.39 (TB_{37v}) + 0.50 (TB_{85v}) + 1.01 (TB_{19h}) - 0.90 (TB_{37h})$$


When ICE is greater than 70%, Sea Ice is assumed present.


Heritage Algorithm (Sea Ice)

(a) F-16 Sea Ice Cover


(b) F-15 Sea loe Cover



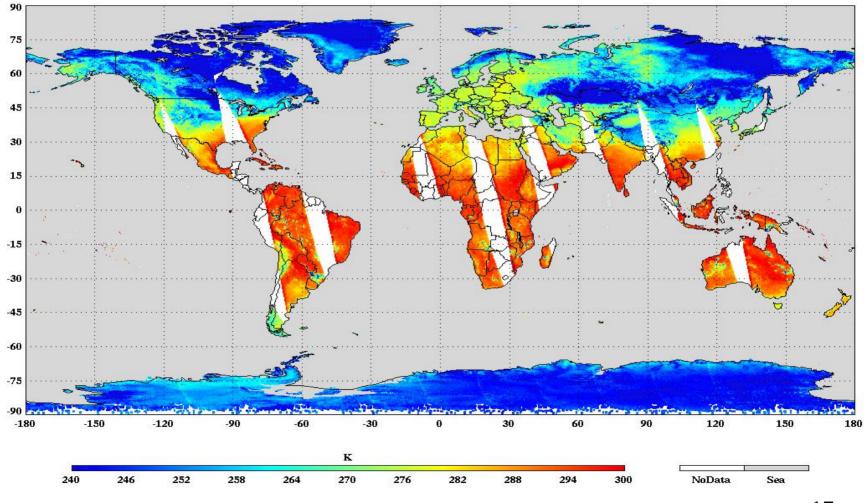
(c) F-16 Sea Ice Cover

(d) F-15 Sea Ice Cover

Land

500

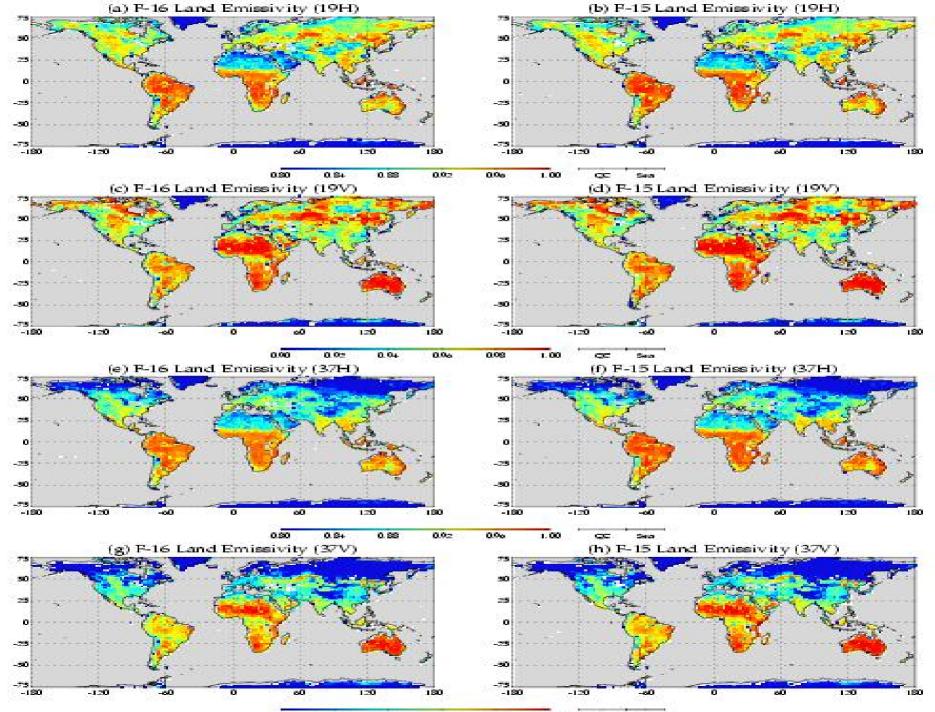
QC


$LST = 0.02509 [1.7167 - 0.005514 (TB_{22 v})] TB_{22 v}$ - [0.1083 + 0.001976 (TB_{37 v})] TB_{37 v} + [1.1763 - 0.000636 (TB_{85 v})] TB_{85 v}

Land Surface Temperature (Experimental)

DMSP F-16 SSMIS Land Skin Temperature 2007-12-10 07:55 PM (Local Time)

NESDIS SSMIS Products


Algorithm Description:

For channels at 19V/H, 22V, 37V/H. emissivity is derived as

$$\varepsilon = a_0 + a_1(TB_{19\nu}) + a_2(TB_{19h}) + a_3(TB_{22\nu})$$
$$a_4(TB_{37\nu}) + a_5(TB_{37h}) + a_6(TB_{85\nu}) + a_7(TB_{85h})$$

For channels at 85V/H

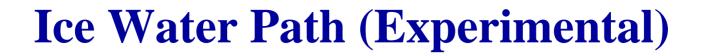
$$\varepsilon = b_0 + [b_1 + b_2(TB_{37\nu})](TB_{37\nu})$$

$$[b_3 + b_4(TB_{85\nu})](TB_{85\nu}) + [b_5 + b_6(TB_{85h})](TB_{85h})$$

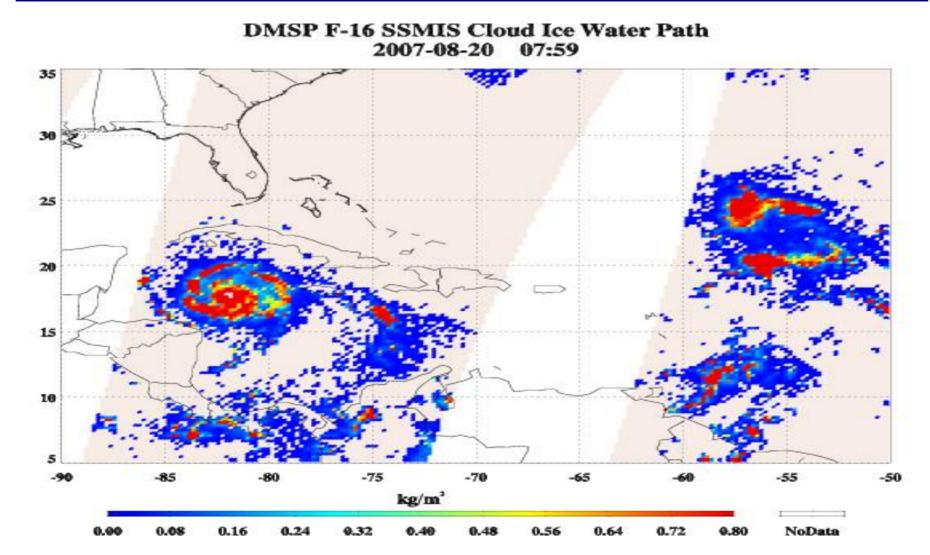
0.90 0.92 0.94 0.96 0.96 1.00 CC Sea

- Weng, F. and N. C. Grody, 2000: Retrieval of ice cloud parameters using a microwave imaging radiometer, *J. Atmos. Sci.*, 57, 1069-1081.
- Zhao, L. and F. Weng, 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit (AMSU). J. Appl. Meteorol. , 41, 384-395.

IWP is derived from SSMIS using two primary SSMIS channels at 91.655 GHz and 150 GHz


$$IWP = \frac{\Omega_{91v} * De * COS \mathscr{G} * \rho_{ice}}{\Omega_N} \qquad D_e = \exp[a_0 + a_1 \ln(r) + a_2 \ln^2(r)]$$

where

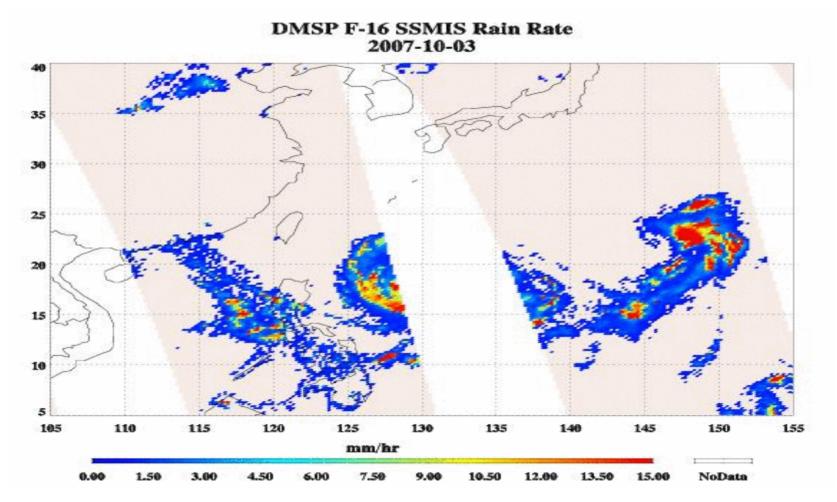

$$r = \frac{\Omega_{91}}{\Omega_{150}} = \frac{\Omega_{N_{91}}}{\Omega_{N_{150}}} \qquad \qquad \Omega = \frac{TB(Estimated) - TB(Observed)}{TB(Observed)}$$

$$\Omega_N = \exp[b_0 + b_1 \ln(D_e) + b_2 \ln^2(D_e)]$$

Rain rate can also be retrieved from IWP using the following equations, (Zhao and Weng, 2001)

$RR = 0.321717 + 16.5043 * IWP - 3.3419 * IWP^2$

Over ocean, Rain Rate is only retrieved when CLW > 0.2 mmand $IWP > 0.05 \text{ kg/m}^2$ and De > 0.4 mm.


Over land, rain rate is retrieved when IWP > 0.05 kg/m² and De > 0.4 mm and Tb(91.655) – Tb(150) > 3 K

Surface Precipitation (Experimental)

Typhoon Luosha

Summary

- F16 SSMIS calibration algorithms work well for eliminating the radiance anomalies associated with antenna emission and contamination of calibration targets.
- All SSM/I heritage products are generated and appear reasonable.
- SSMIS precipitation algorithm can be significantly improved through uses of high frequency channel at 91 and 150 Ghz which are more sensitive to light rain and falling snow events.
- Several experimental environmental products are being developed at NESDIS through Microwave Integrated Retrieval System (e.g. T, Q, Hydrometeor profiles, etc.)