

A High Spectral Resolution MODIS/ASTER (MODAST) Emissivity Dataset

NASA MEaSUREs

(Making Earth Science Data Records for Use in Research Environments)

Glynn Hulley¹, Eva Borbas², Robert Knuteson², Simon Hook¹,

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 2. University of Wisconsin-Madison, Madison, WI

(c) 2015 California Institute of Technology. Government sponsorship acknowledged.

Outline

- NASA MEaSUREs Project Overview
- MODIS Baseline Fit Emissivity Product (CIMMS)
- ASTER Global Emissivity Dataset (GED)
- MODIS/ASTER (MODAST) High Resolution Emissivity Dataset
- Validation/Evaluation Preliminary Results

MEaSUREs Land Surface Temperature (LST) and Emissivity Data Products

<u>Goal:</u> Generate long-term, and well characterized Earth System Data Records (ESDRs) that are consistent across different platforms/sensors

Products	Input Datasets	Spatial Resolution	Temporal Resolution	Bands Used	Algorithm(s)
LEO LST	MODIS (Aqua/Terra)	• 1-km • 0.05° (Global)	 10:30 am/pm 01:30 am/pm Monthly 	3 TIR (8-12 μm)	MERRA2/RTTOV TES
GEO LST	GOES (8-12)	5-km (Americas)	Every 30 min	1 TIR (11 μm)	MERRA2/RTTOV Single-Channel
LEO Emissivity (MODAST)	ASTER GED MODIS BF	0.05° (Global)	Monthly	13 and 417 (3.6-14.3 μm)	TES, Day/Night

The UW Global IR Land Surface Emissivity Database: Baseline Fit Method

•Based on a **conceptual model** developed from **laboratory measurements** (UCSB) of surface emissivity is applied to fill in the spectral gaps between the six emissivity wavelengths available from **MYD11**

-10 hinge points were chosen between 3.7 and 14.3 μm

•Adjust a laboratory-derived "baseline emissivity spectra" based on the MOD11 values for every global latitude/longitude pair

•Result: a monthly global emissivity database at 10 wavelengths with 0.05 degree spatial resolution

Reference:

Seemann et al., 2008: JAMC, 47, 108-123. Applications/Users: MODIS Atmospheric Retrievals (UW,NASA) IMAPP/AIRS retrievals (UW) GEOCAT (NOAA/CIMSS) Climate Monitoring SAF (EUMETSAT) AIRS Retrieval of Dust Optical Depths (UMBC/ASL) IASI-Metop Cal/Val (CNES, France) IASI retrieval (EUMETSAT, UW, Neteo-France)) Retrieval of hot spot data from AATSR (ESA) Energy balance from ASTER over glacier (Univ of Milan) AIRS trace gas retrieval (Stellenbosch University, South-Africa, JCET-UMBC) Education (Seoul National Univ.; NTA, Konstantin) SEVIRI water vapor retrievals (UW, EOS) SEVIRI aerosol retrieval (Univ Oxford) SEVIRI cloud and ozone retrieval (EUMETSAT) SEVIRI cloud phase, cloud top parameter retrievals (KNMI) LST retrievals from GOES-R (NOAA NESDIS) OSS calculations (AER) AIRS NWP model assimilation (UKMO)

ASTER Global Emissivity Dataset (GED)

• ASTER Quick Facts:

- VIS/SWIR/TIR sensor on Terra Spacecraft (launch Dec 1999)
- 90 m spatial resolution (60 x 60 km swath)
- 5 TIR bands (8 12 micron)
- 16 day repeat (on demand imaging)

Global Dataset only possible after 10+year of imaging!!

Products	Spectral	Spatial	Temporal	Estimated Uncertainty	Availability
GEDv3	5 Bands (8-12 μm)	~100 m	Climatology (2000-2008)	~1.5-2%	*LPDAAC
GEDv4	5 Bands (8-12 μm)	~0.05°	^ψ Monthly (2000-2015)	~1.5-2%	*LPDAAC (Nov 2015) **CIMMS

⁴ GEDv4 uses MODIS NDVI/snow cover to adjust GEDv3 emissivity on monthly steps

* https://lpdaac.usgs.gov/dataset_discovery/community/community_products_table

** http://cimss.ssec.wisc.edu/iremis/

Hulley, G. C., Hook, S.J., E. Abbott, N. Malakar, T. Islam, M. Abrams, 2015, The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth's emissivity at 100 meter spatial scale, Geophysical Research Letters, 42, doi:10.1002/2015GL065564.

MODAST Emissivity Methodology

MODAST High Spectral Resolution: 417 channels from 3.6 – 14.3 micron

- PC Regression fit approach based on ASTER Spectral library
- 3 Regressions (Vegetation, Desert, Carbonates)

MODAST Emissivity Temporal Variation Rocky Mountains – Snow Melt

Validation/Evaluation

- 1. Assess seasonal changes in vegetation phenology
 - Dahra, LSA-SAF Validation site
- 2. Check spectral invariance over graybodies
 - Vegetation
 - Large inland water bodies
- 3. Check spectral shape over geologic surfaces:
 - Namib desert (quartz and hematite sand)
 - Yemen (carbonate)
 - Mauna Loa Caldera (basalts)
 - Gran Desierto (feldspars/quartz)
 - Rub Al Khali (quartz)
 - Kalahari Desert (quartz/hematite)

Namib Desert – Sossussvlei, Namibia

Nicolet 520 FTIR spectrometer

Collect Samples

Range: 2.5 – 15 µm Resolution: 4 cm⁻¹ Estimated accuracy (0.02 K)

Site 1: Interdune (vlei) 2 samples

Site 2: Dune crest 6-samples

Dead Vlei 'Flay'

1 km

Namib Desert (Quartz)

Namib Desert

Mauna Loa Caldera, Hawaii Maffic Iava flow – Basalt rock

Sampled numerous times by ASTER science team at JPL since 1990's

Mauna Loa Basalt Rock

Sahara Desert Basalt Rock

Next Steps ...

- Run RTTOV forward simulations with IASI to compare BT differences (underway.. see E. Borbas poster)
- Continue evaluation with ground truth
- Compare with D. Zhou IASI product

Deliverables:

- Deliver first set of data to LPDAAC (Aug. 2016)
- 'Beta' product currently available for testing and evaluation
 - Contact Eva Borbas for data access
 - 2000-2015 Monthly at 0.05 degree