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IASI stand-alone cloud detection scheme 
The baseline 

Test Method Threshold 
hs-test  Look for  similarity in shape  of a 

given observed spectrum with a 
reference spectrum  for clear sky 

Critically depending on surface 
emissivity  

Surface temperature test In super window channels the 
corresponding BT is almost 
proportional to surface 
temperature  (need a reference 
surface temperature) 

Depends on surface emissivity 

The super-window tests @ 1168 
and 830 cm-1  

Look at the slope of the window The slope can depend on surface 
emissivty 

The CO2 split-window test @ 791 
cm-1 

Sensitive to the pressure surface  Mostly depending on surface 
pressure 

The LW-SW regression test Look at the coherency between 
short and long wave regions of the 
spectrum sensitive to temperature 
(CO2) channels 

Depends on the surface properties 
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Our cloud detection approach and hs-methodology for 
IASI has been largely published in the peer reviewed 

literature 
 Carmine Serio, Alberta Marcella Lubrano, Filomena Romano, and Haruisha Shimoda, "Cloud 

Detection Over Sea Surface by use of Autocorrelation Functions of Upwelling Infrared Spectra in the 
800–900-cm−1 Window Region," Appl. Opt. 39, 3565-3572 (2000)  
 

 Guido Masiello, Marco Matricardi, Rolando Rizzi, and Carmine Serio, "Homomorphism between 
Cloudy and Clear Spectral Radiance in the 800-900-cm-1 Atmospheric Window Region," Appl. Opt. 
41, 965-973 (2002)  
 

  Masiello, G., Serio, C., Shimoda, H. Qualifying IMG tropical spectra for clear sky, Journal of 
Quantitative Spectroscopy and Radiative Transfer, 77 (2), p.131-148, Mar 2003 
doi:10.1016/S0022-4073(02)00083-3 
 

 Guido Masiello, Carmine Serio, and Vincenzo Cuomo, "Exploiting Quartz Spectral Signature for the 
Detection of Cloud-Affected Satellite Infrared Observations over African Desert Areas," Appl. Opt. 
43, 2305-2315 (2004) 
 

 Grieco, G., Masiello, G., Matricardi, M., Serio, C., Summa, D. and Cuomo, V. (2007), Demonstration 
and validation of the φ-IASI inversion scheme with NAST-I data. Quarterly Journal of the Royal 
Meteorological Society, 133: 217–232. doi: 10.1002/qj.162 
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Surface emission can be separated from atmospheric emission  
with Correlation Interferometry, that is by properly exploiting the 
concept of partial interferogram 
 Kyle, T.G. Temperature soundings with partially scanned 

interferograms, Appl. Opt., 1977, 16/2, 586 326-332. 
 Smith, W.L.; Howell, H.B.; and Woolf, H.M. The use of interferometric 

radiance measurements for sounding the atmosphere, J. Atmos. 
Science  1979, 36, 566-575 
 

 G. Grieco, G. Masiello, C. Serio, R. L. Jones, and M. I. Mead, "Infrared 
Atmospheric Sounding Interferometer correlation interferometry for 
the retrieval of atmospheric gases: the case of H2O and CO2," Appl. 
Opt. 50, 4516-4528 (2011) 

ITSC-18 Toulouse March 2012 



Exemplifying the concept of emissivity as a low frequency component 
through spectra with different emissivity, but same atmospheric state 
vector. The emissivity signal is very strong in window regions    
IASI Interferogram at full 
range  

Spectrum  
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IASI INTERFEROGRAM  CUT 
BELOW 0.023 CM  SPECTRUM 
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IASI INTERFEROGRAM  
BETWEEN 1.5 – 1.9 CM  DIFFERENCE SPECTRUM 
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LOW FREQUENCY ANALYSIS 
(THE NOISE HAS BEEN PROPERLY SCALED) 

HIGH FREQUENCY ANALYSIS 
(THE NOISE HAS BEEN PROPERLY  SCALED) 
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Use the difference spectrum! 

Spectrum Difference spectrum 
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Seviri cloud mask co-located with 
IASI 
Colocating SEVIRI to IASI Details of the co-location 
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Results: orbit 1 
Sea Surface: Aden Gulf, Red sea and Indian ocean  
Land surface: Turkey and Arabian peninsula, Eastern Africa 

Sea surface: coincidence  table 
 

Land surface: coincidence  table 

Seviri 
Cloud-
mask 

IASI d-spectrum 
Cloud mask 

Clear  Cloudy  Total 

Clear  1803 
(83%) 

377 
(17%) 

2180 
(100%) 

Cloudy 189 
(18%) 

861  
(82%) 

1050 
(100%) 

Seviri 
Cloud-
mask 

IASI d-spectrum 
Cloud mask 

Clear  Cloudy Total 

Clear   7639 
(89%) 

949 
(11%) 

8588 
(100%) 

Cloudy 237 
(16%) 

1250 
(84%) 

1487 
(100%) 

Total coincidence: 82.5% Total coincidence: 88.2% 
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Blue is clear sky 
Red is cloudy 
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Blue is clear sky 
Red is cloudy 
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Results: orbit 2;  
Sea surface: Mediterranean area, Atlantic Ocean  (Namibia) 
Land surface: Eastern Europe, Sahara desert, rain forest,  
Kalahari desert 

Sea surface: coincidence table 

Seviri 
Cloud-
mask 

IASI d-spectrum 
Cloud mask 

Clear  Cloudy  Total 

Clear   1758 
(89%) 

209 
(11%) 

 1967 
(100%) 

Cloudy 136  
(5%) 

 2584 
(96%)         

2720 
(100%) 

 

Land surface: coincidence table 

Seviri 
Cloud-
mask 

IASI d-spectrum 
Cloud mask 

Clear  Cloudy Total 

Clear   6748 
(97%) 

226  
(3%) 

6974 
(100%) 

Cloudy 373 
(12%) 

2794 
(88%) 

3167 
(100%) 

Total coincidence: 92.6% Total coincidence: 94.1% 
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Results: orbit 3;  
Sea surface: Mediterranean area, then Atlantic Ocean   
Land surface: Western Europe, Western Sahara desert, rain forest 

Sea surface: coincidence table 

Seviri 
Cloud-
mask 

IASI d-spectrum 
Cloud mask 

Clear  Cloudy  Total 

Clear   540 
(82%) 

121 
(18%) 

 661 
(100%) 

Cloudy 50  
(2.7%) 

 1764 
(97.3%)        

1814 
(100%) 

 

Land surface: coincidence table 

Seviri 
Cloud-
mask 

IASI d-spectrum 
Cloud mask 

Clear  Cloudy Total 

Clear   4202 
(98%) 

86  
(2%) 

4288 
(100%) 

Cloudy 432 
(16%) 

2298 
(84%) 

2730 
(100%) 

Total coincidence: 93.1% Total coincidence: 92.6% 
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Over  37626  IASI spectra covering 
1. Land surface (desert soil, rain forest, organic soil, canopy, 

mountains) 
2. Sea surface 
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 Combining Correlation interferometry with hs-
methodology we have devised a IASI stand-alone cloud 
detection scheme, which can work  on land and sea 
surface. 

 The cloud detection looks at the clear-sky atmospheric 
fingerprint and does not need any information about the 
optical properties of the surface (emissivity) 

 A method has been developed, which uses the Chevalier 
data base for the training. The surface emissivity has been 
modeled with the Masuda sea surface emissivity. 

 No real IASI observations have been added to the training 
data base. 

 The comparison with SEVIRI imagery and cloud mask 
shows a coincidence which is higher than 90%. 
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