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Abstract: Retrieval of satellite microwave sounding data under clear 

sky is much accurate now, but the accuracy in unclear sky such as cloudy 

and precipitation is not so well, the main reason of such is that the 

observation error changes in unclear sky while which is not considered in 

retrieval. The observation error could be diagnosis and tuned according to 

the hypothesis that the relationship between background and observation 

error are unrelated in data assimilation. In this paper, Desrozier’s 

approach of diagnosis and tuning to observation error is used in retrieval 

of temperature and water materials from AMSU sounding data in all sky 

conditions under the basis of MIRS. Result shows that the error tuning 

could get observation error of more accuracy and make retrieval 

improved at all weather conditions. In details the retrieved temperature 

profiles are close to verification data, water materials such as ice water 

path and rain rate are accord with CloudSate data also. 
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1. Introduction 

Currently most operational assimilation and retrieval systems are 

based on the variational formalism (Courtier and Talagrand 1987). The 

formalism allows the use of unconventional observation such as satellite 

data which is not directly or linearly linked with model variables. 

However the variational algorithm relies on the theory of least-variance 

linear statistical estimation (Talagrand 1997), in this algorithm each set of 

information is given a weight proportional by its specified error 

covariance. Classically, error information is given by estimation to the 

observation and background of atmospheric state. Variational 

assimilation and retrieval method is dependent on the appropriate 

statistics of observation and background error. Unfortunately it is known 

that those statistics error are not accurate, especially in complicated 

weather conditions such as unclear sky and their determination remains a 

big challenge, which makes satellite data assimilation and retrieval 

behaves well in clear sky but un-ideal in unclear sky conditions such as 

cloudy and precipitation. 

Much effects has made in determining observation error perfectly, 

Hollingsworth and Lonnberg (1986) had a study of getting information 

from the differences between observation and the background of 

counterpart by assuming that background errors are cross-correlations 

while observation errors not. Desroziers and Ivanov (2001) proposed a 



method to tune scaling coefficients for the observation error covariance 

based on an optimality criterion for the cost function at the minimum, 

assuming the correlations are accurately represented in the initially 

assumed observation error covariance. This has been applied by Chapnick 

et al. (2006) and others for diagonal observation error covariance 

matrices. Related to this method is the maximum-likelihood estimation 

(Dee and da Silva, 1999), which directly fits free parameters of 

covariance models to FG-departure statistics. While these methods 

provide useful tools, the drawback of them is that little is known about 

which covariance models would be appropriate for satellite radiances. 

Using incorrect covariance methods can lead to undesired results (Liu and 

Rabier, 2003; Chapnick et al., 2006). G. Desroziers et al. (2005) 

presented an approach of diagnosis and tuning observation error based on 

combination of observation minus background, observation minus 

analysis and background minus analysis differences. Another way of 

tuning observation error is Hollingsworth/ Lonnberg method (Rutherford, 

1972; Hollingsworth and Lonnberg, 1986), which made an assumption 

that FG errors are spatially correlated while observation errors are not. 

Niels Bormannn and Peter Bauer (2010) made a comparison between 

Hollingsworth/ Lonnberg method and Desroziers method and found the 

later method is better in tuning observation error in 4dvar assimilation. 

Besides, in this paper study is focus on 1dvar retrieval, which means that 



spatially correlation in FG errors is not exist, so the Hollingsworth/ 

Lonnberg method is not used in this study. 

Microwave Integrated Retreieval System (MIRS) is developed by 

NOAA based on an assimilation-type scheme (1DVAR), with capable of 

optimally retrieving atmospheric and surface state parameters 

simultaneously. The direct outputs from MIRS include temperature, 

moisture and several hydrometeors atmospheric profiles, land surface 

temperature and emissivity at all channels. In this paper, Desrozier’s 

approach of diagnosis and tuning to observation error is used in retrieval 

of temperature and water materials from AMSU sounding data in all sky 

conditions under the basis of MIRS. 

In section 2, the approach of diagnosis and tuning observation error 

by G. Desroziers is introduced. The comparison of using tuned and 

original observation error in retrieval is in section 3. Section 4 is the part 

of conclusion. 

2. Desrozier’s approach of diagnosis and tuning 

observation error  

In this section, Desrozier’s approach of diagnosis and tuning 

observation error is introduced briefly. In variation algorithm the analysis 

is usually archived by deriving the minimization of cost function (Lorenc 

1986). The cost function J(x) is 
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Cost function J(x) has minimum value when its’ derivative equal to 

zero in mathematics. And the analysis result is  
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Another form of ax  is that: 
0
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                              (3) 

Where bx  is the background information and axσ  is the analysis 

increment. K is the gain matrix. 
1
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Where B and R is the background and observation error covariance 

matrix independently, H is the nonlinear observation operator when 

background and observation are different. H is the matrix corresponding 

to linearized H.
0

bd  is the innovation vector, which means the difference 

between observation and background in counterpart.  
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In variational algorithm it is always assumed that the relationship of 

errors between background and observation are unrelated. Considering 

the linearity of the statistical expectation operator E, it is clear that. 
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Also the difference between analysis and background can be 

defined as b( ) ( ) H HKa o
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So the multiply of  and 
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The statistics expression of above equation is  
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Considering gain matrix K, equation (8) can be expressed in 

another form:   [ ]( ) HBH
Ta To

b bE d d =                             (9) 

Similarly the difference between observation and analysis is 
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The statistical expectation of cross-product between 
o
bd  and 

o
ad  is 
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Making a combination of equation (6) and (10) it is clear that 
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According to equation (12), in statistical observation error could be 

diagnosis and tuned if observation, background and analysis are known. 
 

3. Application of observation error tuning in retrieval  

Desrozier’s approach of diagnosis and tuning observation error is 

introduced in section two. In this section that algorithm is used in 

retrieval of (Advanced microwave sounding unit) AMSU and (microwave 

humidity sounder) MHS observation of NOAA-19 on the bias of MIRS.    

3.1 Data choosing  

Considering of the land emissivity simulating on complex surface 

does not accurate enough and observation should be verified by other 



data, the typhoon ‘FAPABI’ is selected as observation target with the 

channels sensitive to land surface are not used, for example AMSU-A’s 

channel 1-4,15 and MHS’s channel 1 and 2. Besides, channel 12 to 14 of 

AMSU-A is not used also. The 11th typhoon ‘FAPABI’ of year 2010 is 

generated on 15th Sep 2010 and perished on 21th, which caused severe 

property damage and casualty to China. NOAA-19’s observation to 

‘FAPABI’ is selected from 00 to 06UTC on 17th Sep 2010 for the reason 

of satellite CloudSate has an observation to that typhoon also during this 

period. And the observation area is selected on open sea with latitude 

between 0oN and 30oN, longitude between 100oE and 240oE. Figure 1 is 

the observation orbit of NOAA-19 to ‘FAPABI’. 

 
Fig 1. The observation orbit of NOAA-19 to ‘FAPABI’ 

 

 

3.2 Approach to distinguish weather condition 

It is well known that the retrieval accuracy changes in different 

weather conditions such as clear sky, cloudy and precipitation. The 

mainly reason for which is the simulation error which contains in 

This image cannot currently be displayed.



observation error has non-linearly variety in different weather conditions. 

So dividing observation into different types according to weather is the 

precondition in studying of retrieval in all weather conditions. 

Clear sky observation is used only in the past for the reason of 

simulation has great error in un-clear sky. There are many researches in 

division clear and un-clear observation. Bennartz advanced an index, 

Bennartz index 1 2( ) ( 39.2010 0.1140 )I BT BTS = − − − + Θ  to weigh 

whether an observation is affected by cloud and rain, where 1BT  and 

2BT  are bright temperature (BT) observations of channel 1 and 2 on 

MHS or AMSU-B, Θ  is the local zenith angle. The absolute value of 

difference between observation and simulated BT | |ob fgBT BT−  of some 

channel (for example channel 4 of AMSU-A and channel 2 of MHS or 

AMSU-B) could express the influence of unclear sky to observation, 

where the obBT  means the observation and fgBT  means the simulated 

background BT. It always believed that an observation is affected (or 

contained) by cloud and (or) precipitation when the absolute value of the 

difference exceeds a given threshold. The precipitation probability index 

could represent the probability of an observation been contained by 

precipitation. The precipitation probability index are: 1/(1 ) 100fp e−= + × ，

1 1510.5 0.184 0.221f BT BT= + × − × , where 1BT  and 15BT  represents 

channel 1 and 15 of AMSU-A independently. 

Those approaches mentioned above are used in dividing observation 



into clear sky, cloudy and precipitation, and observation to ‘FAPABI’ in 

visible light is used as the verification. Result shows that the approach of 

difference between observation and simulated BT in channel 2 of MHS 

could distinguish the clear and un-clear sky with the threshold of 5 (fig.2), 

and the precipitation probability index exceed 60 means precipitation 

exists (fig.3). 

  

Fig.2. | |ob fgBT BT−
 in channel 2 of MHS to ‘FAPABI’, bigger than 5 means cloudy 

 

Fig.3. Precipitation probability index to ‘FAPABI’, value bigger than 60 means precipitation 

In this paper the approaches selected to divide observation into clear 

sky, cloudy and precipitation is as follow: 

1. Observation is in clear sky if the absolute value of difference 

between observation and simulated BT is smaller than 5 on channel 2 of 



MHS and the precipitation probability index is smaller than 60. 

2. Observation is in cloud if the absolute value of difference between 

observation and simulated BT is bigger than 5 on channel 2 of MHS but 

the precipitation probability index is smaller than 60. 

3. Observation is in precipitation if the absolute value of difference 

between observation and simulated BT is bigger than 5 on channel 2 of 

MHS and the precipitation probability index is bigger than 60. 

3.3. Comparison of retrieval result 

In this section, the tuned and original observation error and the 

retrieval result of counterpart are analyzed and compared.  

3.3.1 Comparison of new and old temperature retrieval  

Make MIRS run once and the original retrieval result are got, then 

the tuned observation error is got using the Desrozier’s approach also. 

Figure 4 is comparison of original and tuned observation error on selected 

channels. 

Fig.4. The comparison of original and tuned observation error on used channels of AMSU-A (left) 

and MHS (right).Original is in solid, tuned in clear sky (dashed), 

 cloudy (dashed-dotted) and precipitation (datted). 



Instead of repesent all weather conditions in unification (such as the 

original observation error) , the tuned observation error repesents weather 

conditions in details, which could make retrieval accurate improved 

comparing with the original one in theory. To verify that, the FNL data is 

used as the truth to checking which retrieval is more accuracy between 

the oringinal and tuned observation error. Figure 5 to 7 are the 

comparison of retrieved temperature in RMS between tuned and original. 

It is obviously that in clear sky at all levels the RMS of retrieved 

temperature by tuned observation error is smaller than the original in 

figure 6. From figure 7 and 8, it is clear also that the RMS of retrieved 

temperature by tuned observation error is smaller than the original in 

unclear weather condition of cloudy and precipitation.  

 
Fig.5. The comparison of RMS in retrieved temperature of background (dashed), 

original (dotted) and tuned (solid) in clear sky 



 
Fig.6. The comparison of RMS in retrieved temperature of background (dashed), 

original (dotted) and tuned (solid) in cloudy 

 
Fig.7. The comparison of RMS in retrieved temperature of background (dashed), 

original (dotted) and tuned (solid) in precipitation 

However, in figure 7 both of the tuned and original observation error 

makes retrieval RMS worse than the background at middle level from 

700 to 500hPa. Here is a possible interpretation for that, in cloudy the 

exist of cloud particle makes simulation error bigger than that in clear sky, 

and the effect of observation error tuning is not magntiude enough to 



make retrieved temperature more accurate than background at middle 

level. The jacobian matrix of temperature on used channel of AMSU-A 

may offer some help in explaining that (Fig 8). In figure 8, the jacobian in 

cloudy (dashed) at channel 5 and 6 of AMSU-A are not so smooth as that 

in clear sky (solid). It is known that channel 5 and 6 of AMSU-A are 

sensitivity to levels about 700 to 400hPa. The abnormity of jacobian on 

channel 5 and 6 of AMSU-A in cloudy makes the temperature retrieval 

un-ideal in middle levels. Manly because of background error is too big 

under the condition of precipitation, the retrieval is better both than 

background in figure 7.  

 
Fig.8. The temperatrue jacobian of channels on AMSU-A in clear sky (solid) and cloudy (dotted) 

 

3.3.2 Verification of retrieved water materials 

MIRS could retrieve water materials such as rain rate from satellite 

observation, figure 9 is the retrieved rain rate and ice water path (IWP) of 

typhoon ‘FAPABI’ by tuned observation error on the basis of MIRS . 



 
Fig.9a. Retrieved rain rate of ‘FAPABI’ (unit: mm/hr) 

 

 
Fig.9b. Retrieved ice water path of ‘FAPABI’ (unit: g/kg) 

 

The satellite CloudSate has an observation to typhoon ‘FAPABI’ 

also during the period of NOAA-19’s scanning to ‘fAPABI’. CloudSate 

data is used here to verify the retrieved rain rate and IWP generated by 

tuned observation error. In figure 10 the red line is the scan orbit of 

CloudSate to typhoon ‘FAPABI’. 



 
Fig.10. The scan orbit of CloudSate to ‘FAPABI’ (red line) 

 

Retrieved rain rate and IWP of typhoon ‘FAPABI’ are interpolated 

onto CloudSate’s orbit by bilinear interpolation to make comparison. 

Figure 11 are the comparison of retrieved water materials to CloudSate. 

From figure 11 it is clear that the retrieved rain rate and ice water path has 

a similar distribution to CloudSate. To the magnitude, the retrieved water 

materials are basically the same as CloudSate considering the resolution 

of two observation data is different (AMSU-A is 45KM while CloudSate 

is about 2km), which means that the big value in high resolution data 

(CloudSate) may be averaged down by low resolution data (AMSU). 

 



Fig.11. The comparison of retrieved water material (dotted) to CloudSate (in solid) 
 of rain rate (left, unit in mm/hr) and IWP (right, unit in mm) 

 

4. Conclusion 

For the reason of simulation error which contains in observation 

error changes in unclear sky while the change is not considered in 

retrieval, satellite microwave sounding data retrieval under unclear sky 

such as cloudy and precipitation are not so accurate as that in clear sky. 

Observation error could be diagnosis and tuned according to the 

hypothesis that the relationship between background and observation 

error are unrelated in data assimilation. In this paper, after using quality 

control to divide observation into three different weather conditions such 

as clear sky, cloudy and precipitation, Desrozier’s approach of diagnosis 

and tuning of observation error is used in retrieval of AMSU sounding 

data at all sky conditions under the basis of MIRS. Comparing of retrieval 

result between original and tuned observation error shows that the error 

tuning could get observation error of more accuracy and make retrieval 

improved at all weather conditions, in details the retrieved temperature 

profiles of tuned observation error are more close to verification data than 

original. Besides retrieved water materials such as ice water path and rain 

rate are accord with CloudSate data also. 

What should be stated out here is firstly the satellite visible light 

figure observation is used in verification to the effect of quality control in  



dividing weather condition, but the figure data tends to be personal error 

in practice, numerical data such as cloud top height may be more suitable. 

Secondly is that the error diagnosis and tuning has no improvement effect 

in humidity retrieval at this experiment, more researches will be carried 

out in future. 
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