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Current Methods for Retrieval Evaluation

Tobin et al. (J. Geophys. Res., 111, D09S02, 2006) used a multi-instrument/platform correlative 
measurement dataset to build the best-estimated atmospheric state for each individual satellite 
measurement for validation. 

Pougatchev et al. (Atmos. Chem. Phys., 9, 6453–6458, 2009) developed a linear statistical Validation 
Assessment Model (VAM) providing the best estimated atmospheric state and corresponding 
nominal satellite measurement using the correlative data per se. 

1. These validation methods are accurate, they depend on other independent measurements, such as radiosondes, and the 
accuracy of these independent “coincident” measurements. These data usually are collected during dedicated field 
campaigns and/or matchup soundings (e.g., radiosonde and Raman Lidar data).

2. In practice, these validation studies are more complex in considering that “coincident” measurements or that 
measurement-derived “truth” is at the same location and time. 

3. In addition, the vertical and horizontal resolutions of other independent measurements have to be taken into account as 
well. The instrumental averaging kernels are typically used to resolve the difference in vertical resolution. However, the 
difference of horizontal resolution and the effect of spatial variations in atmospheric properties are too complex to 
consider and is often neglected. 

4. These validation methods do not validate all retrieval parameters (such as land surface skin temperature and emissivity).
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Our motivation for this work is to understand and estimate the retrieval error contributed by major error sources in obtaining 
a link between the retrieved-geophysical-parameters and the radiometric accuracies. For example, we would like to 
answer questions such as how the radiometric random noise in the measurement propagates to the retrieval error (or 
retrieval noise) in the retrieved parameters, e.g., temperature and moisture profiles, and what is the magnitude of 
retrieval error introduced by an ill-posed retrieval model. 

What is achieved retrieval accuracy?

Our approach:
1. Develop a statistical Error Consistency Analysis Scheme (ECAS) through fast RTM forward and inverse (RTM-1) 

calculations. 
2. Estimate the error budget in terms of mean difference (bias) and standard deviation of difference (STDE) in both spectral 

radiance domain and retrieved-geophysical-parameter domain for major error sources. 
3. Provide an internal consistency check with RTM and RTM-1 calculations to establish a reliable link between radiometric 

error in the spectral radiance domain and retrieval error in the geophysical-parameter domain. 
4. Limits the uncertainty introduced by the different time and space in other validation studies (e.g., using radiosonde 

measurements); and provides error estimation on all retrieved parameters.

These errors are from (1) an ill-posed retrieval system, (2) the instrument random noise, and (3) the discrepancy between 
measured radiances and the RTM “truth” simulated radiances added with instrument noise (hereafter denoted as “un-
modeled” errors). 

Motivation & Approach



Emissivity seasonal variation: Monthly mean 
climatology ε measured from 40.0-40.5 N 

Latitude and 109.5-110.0 W Longitude. 

Climate Data Record: Ts & εν

IASI monthly mean climatology based on 5-year 
measurements: December nighttime (a) surface skin 
temperature (Ts) and (b) emissivity at 890 cm-1 (ε890).



Sample from 40.0-40.5 N Latitude and 109.5-110.0 W Longitude: Illustration of monthly mean (a) Ts and (c) ε975
against their monthly mean climatology, (b) Ts anomalies and (d) ε975 anomalies plotted to derive their trends.

Climate Data Record: Ts & εν



At other 2 locations:  As El Niño plays the largest role in tropical drought occurrence, one location in Australia is 
chosen (right-column of Fig. 5: 24.5-25.0 S Latitude; 145.0-145.5 E Longitude) to illustrate ε variation 

associated with the drought during the El Niño years and greater rainfall during La Niña events 

Climate Data Record: Ts & εν



Error Consistency Analysis Scheme (ECAS)

    as
R , as

R
  r
R , r

R

  n
R , n

R

    

   m
R  as

R r
R n

R;      (n
R  0)

  [ 2  (m
R )2 ]1/ 2

      [( as
R )2  ( r

R )2  ( n
R )2  ()2 ]1/ 2



  n
Y , n

Y

  r
Y , r

Y

    a
Y ,a

Y

  m
Y ,m

Y

  ,

Rm

RTM-1RTM-1 RTMRTM RTM-1RTM-1

RTM-1RTM-1

RTM-1RTM-1

RTM-1RTM-1 RTMRTM

RTMRTMYm Rs1

Rs1m

Rs1n

RemYem
Ys1m

Ys1 Rs2a

Rs2bYs1n

ECAS and analysis flowchart. The “un-modeled” radiance errors [       ] in the shaded area are first 
estimated starting with measured radiances Rm. Then the “un-modeled” radiance errors and instrument 
random noise are used to estimate retrieval errors in the rest of the flowchart
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Error Consistency Analysis Scheme (ECAS) - 2

Notation:
Rm = measured radiances
 = instrument random noise
E = “un-modeled” radiance bias
Σ = “un-modeled” radiance STDE
Ym = retrievals from Rm

Rs1 = simulated radiances from Ym

Rs1n = Rs1 with instrument noise
Rs1m = Rs1 with “un-modeled” error 
Ys1 = retrievals from Rs1

Ys1n = retrievals from Rs1n

Ys1m = retrievals from Rs1m

Rs2a = simulated radiance from Ys1

Rs2b = simulated radiance from Ys1n

Rem = emulated radiance 
Yem = retrievals from Rem

εR = bias in radiance domain
σR = STDE in radiance domain
εY = bias in retrieval domain
σY = STDE in retrieval domain

subscription for ε and σ:
a = all error sources with Rm 

as = all error sources with Rm and a

r = ill-posed inversion
n = random noise ret.-induced
m = “un-modeled” error ret.-induced



Data and RTM (RTM-1) Used for Demo. 

Data: IASI data from JAIVEx campaign covering the continental US and the Gulf of Mexico using 11871 identified 
“clear” cases out of a total 21600 observations. Only retrievals identified as “clear-sky” measurements are used to 
represent error budget estimations under “clear-sky” conditions. 

RMT: The fast transmittance model used herein is a combination of the Stand-alone AIRS Radiative Transfer Algorithm 
(SARTA) Version 1.07 and the physically-based cloud RTM based on the DIScrete Ordinate Radiative Transfer 
(DISORT) calculations performed for a wide variety of cloud microphysical properties.

1. Strow et al., “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, 
pp. 303–313, Feb. 2003.

2. Stamnes et al., “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering 
and emitting media,” App. Opt., 27, no. 12, pp. 2502–2509, Jun. 1988.

3. Yang et al., “Radiative Properties of cirrus clouds in the infrared (8-13 m) spectral region,” J. Quant. Spectros. 
Radiat. Transfer, vol. 70, no. 4, pp. 473–504, Aug. 2001. 

RTM-1 An iterative 1-D Var. multi-variable inversion using the minimum-information regularization method is used for 
obtaining the final retrieval (i.e., cloud, surface, and atmospheric parameters). An all-season, global EOF regression 
database is used to obtain the initial profile for the 1-D Var. physical retrieval. 
The retrieval algorithm used here only uses measured radiance and instrument noise; no other “truth” data from 
satellite or surface-based instruments or from numerical weather analysis/prediction models are utilized in assisting 
or constraining the retrieval products. 

1. Zhou et al., “All weather IASI single field-of-view retrievals: Case study - Validation with JAIVEx data,” Atmos. 
Chem. Phys., vol. 9, pp. 2241–2255, Mar. 2009.

2. Zhou et al., “Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements,” J. 
Atmos. Sci., vol. 64, no. 3, pp. 969–982, Mar. 2007.



ECAS: Radiance Domain -1

Note:
1. Primary errors: “un-modeled” error 

and instrument random noise.
2. Secondary errors: retrieval-induced 

error.

1. “um-modeled” bias
2. ill-posed retrieval bias
3. “un-modeled” error retrieval-induced bias
4. random noise retrieval-induced bias ≈ 0
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ECAS: Radiance Domain -2
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ECAS: Radiance Domain - 3
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ECAS: Retrieval Domain
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ECAS: Retrieval Domain
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ECAS: Retrieval Domain
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ECAS: Retrieval Domain
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ECAS: Retrieval Domain
This [           ] can also be estimated by                            and                                                .  Two approaches 
for total retrieval error estimation have given nearly the same results (i.e., [           ] ≈ [            ]), indicating 
our early assumption of independent error sources is suitable for the analyses. 
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ECAS: Retrieval Error Estimated - 1

Dropsondes 

Radiosonde 

Temp Deviation from the Mean (K)

Relative Humidity (%)

Drop

Drop

Raob

Retrieval error estimated by ECAS

Gulf of Mexico     Continental US

[  Error = Yem – Ym ]



ECAS: Retrieval Error Estimated - 2

(a) Bias and (b) STED for temperature profile error budget estimation; (c) bias and (d) STDE for water vapor profile error 
budget estimation in a relative value (%) of water vapor mixing ratio in g/kg. “Un-modeled”, ill-posed retrieval, instrument 

noise, and total error are in red, green, blue, and black, respectively.

Surface Skin Temperature Errors

Bias (K) STDE 
(K)

“un-modeled” -0.127 0.131

ill-posed Ret -0.093 0.276

ins. noise 0.0 0.153

total -0.220 0.342

Bias (K) STDE 
(K)

Over water -0.134 0.362

Over land -0.270 0.349

(a) (b) (c) (d)

Temperature Profile Errors Water Vapor Profile Errors



Discussion and Summary 
1. The “un-modeled” error is estimated:  “un-modeled” is measurement dependent, it can be different 

from time to time and depends on atmospheric conditions (e.g., aerosol, dust, and some trace species not 
modeled in current RTM).  

2. There is no time and space difference:  since the iteration between radiance simulations and retrievals 
starts with measured radiance spectra, the horizontal footprint size of a retrieved profile obtained from its 
associated-measured spectrum is the same as the one it compares with to produce the final retrieval error.  
These retrievals, at difference stages of the analysis, have an almost identical vertical resolution. This 
provides a critical advantage of limiting the uncertainty or so-called “artificial smoothing error” caused 
by a different time and space of the “truth” in retrieval validation or error estimation. 

3. Error estimation is meaningful only if that parameter is retrieval sensitive: for instance, error for the 
moisture profile above the tropopause (~18 km) is not meaningful as the moisture above the tropopause 
is not sensitive to measured radiances. 

4. ECAS contains an “ill-posed” problem:  given the retrieval parameters and their errors compensating 
to a certain minimal degree among themselves, although constraints are used in the retrieval to minimize 
such cross talk among retrieved parameters. For example, the retrieval errors estimated herein for surface 
skin temperature and emissivity spectra could compensate each other to satisfy a minimal radiance fitting 
in the retrieval process.

5. The challenge is that the retrieval error is dominant:  retrieval error is algorithm dependent, it is 
larger than other errors introduced by “un-modeled” and instrument noise errors.


