

SUOMI National Polar-orbiting Program Status and Instrument Performance

Mitchell D. Goldberg, NOAA JPSS Program Scientist

and the NPP SDR and EDR Team

The Team

- NOAA, NASA, NRL, FNMOC, NAVO, AFWA
- Cooperative Institutes (CIMSS, CIRA, CICS)
- UMBC, HU, UTAH SDL, MIT-LL, AEROSPACE, NGAS, Miami,
- Raytheon
- External users: UKMO, ECMWF

Overview of the NPP Instruments, Products, Processing System

Initial Results from VIIRS, ATMS, CrIS, OMPS and CERES

SUCCESSFUL LAUNCH October 28, 2011!!!!

NPP/JPSS Instruments

JP	SS Instrument	Measurement	NOAA Heritage	NASA Heritage
	ATMS	ATMS and CrIS together provide profiles of high vertical resolution atmospheric	AMSU	AMSU
	CrIS	temperature and water vapor information	HIRS	AIRS
	VIIRS	Provides daily high-resolution imagery and radiometry across the visible to long-wave infrared spectrum for a multitude of environmental assessments	AVHRR	MODIS
	OMPS	Spectrometers with UV bands for ozone total column measurements	SBUV-2	OMI
	CERES	Scanning radiometer which supports studies of Earth Radiation Budget		CERES

NPP Spacecraft (JPSS-1 Concept)

Functional Scope: The NESDIS Central

ND ATMOSP

NOAA

Office of Satellite & Product Operations (OSPO) will provide common services:

- Data Center Operations
- Telecommunications
- User Services (Help Desk)
- Config. Management
- Security Controls
- Distribution

Center for Satellite Applications and Research (STAR) and partners provides:

- Validation of sensor and environmental data records
- Algorithm development and improvements
- Supports both JPSS 9
 IDPS and NDE

Derived Products

Direct Readout Stations using Xband

Terra/Aqua DB Sites

UW CIMSS providing the Community Satellite Processing Package

Cross-Track Infrared Sounder (CrIS)

NPOESS Preparatory Satellite – Launch: October 2011

- Michelson Interferometer: 0.625,1.25, 2.5cm⁻¹ (resolving power of 1000)
 - Spectral range: 660-2600 cm⁻¹
 - 3 x 3 HdCdTe focal plane passively cooled (4-stages) to 85K
 - Focal plane 27 detectors, 1305 spectral channels
 - 310 K Blackbody and space view provides radiometric calibration
 - NEDT ranges from 0.05 K to 0. 5 K

AIRS

Atmospheric InfraRed Sounder Grating spectrometer 166 kg, 256 W 13.5 km FOV at nadir, contiguous Launched on Aqua in 2002

Infrared Atmospheric Sounding Interferometer Michelson interferometer 236 kg, 210 W 2x2 12 km FOVs at nadir, non-contiguous Launched on Metop-A in 2006

CrIS

Cross-track Infrared Sounder Michelson interferometer 146 kg, 110 W 3x3 14 km FOVs at nadir, contiguous To be launched on NPP

CrIS RTV for 20 Jan 2012, t1910005

CrIS RTV for 20 Jan 2012, t1254026 Temperature and Humidity

CrIS d20120120_t1254026 Relative Humidity [%] at 706.565 mbar

CrIS 20 Jan 2012, t1254026 Cloud Top pressure and Cloud Optical Thickness

T Cloud top pressure [mbar]

CrIS d20120120 t1254026

CrIS d20120120_t1254026 Cloud Optical Thickness

CrIS RTV for 20 Jan 2012, t1254026 Temperature and Relative Humidity Cross-sections

CrIS d20120120_t1254026 Relative Humidity [%] at Scanline 120 Pressure [hPa] $Z \perp$ Footprint Number

CrIS/AIRS BT Comparison

AIRS <u>Water Vapor</u> Channel Tb (K)

AIRS Tb (K) of 1477.5 cm⁻¹

03/12/2012

Two Granules

CrIS/AIRS BT Comparison

300

290

280

270

260

250

240

230

220

210

CrIS <u>Window</u> Channel Tb (K) CrIS Tb (K) of 911.25 cm⁻¹ 90[°] W 80[°] W 70[°] W 60[°] W 50[°] W 6:28 UTC 50[°] N 40[°] N 6:34 UTC 30[°] N 🕱 20[°] N 10[°] N 6:40 UTC

CrIS Water Vapor Channel Tb (K)

CrIS Tb (K) of 1477.5 cm⁻¹

03/12/2012

Comparison of CriS and AIRS for LW Window

Ascending_orbits: CRIS (900 cm⁻¹) BT (K) Date: 2012-02-11

Descending_orbits: CRIS (900 cm⁻¹) BT (K) Date: 2012-02-11

Ascending_orbits: AIRS 902.5 cm⁻¹ BT (K) Date: 2012-02-11

Descending_orbits: AIRS 902.5 cm⁻¹ BT (K) Date: 2012-02-11

ATMS Design Challenge

Spectral Differences: ATMS vs. AMSU/MHS

		AIVISU/IVIH	ATIVIS				
	Ch	GHz	Pol	Ch	GHz	Pol	
	1	23.8	QV	1	23.8	QV	(
	2	31.399	QV	2	31.4	QV	
	3	50.299	QV	3	50.3	QH	
				4	51.76	QH	
	4	52.8	QV	5	52.8	QH	
	5	53.595 ± 0.115	QH	6	53.596 ± 0.115	QH	
_	6	54.4	QH	7	54.4	QH	
7-D	7	54.94	QV	8	54.94	QH	
MS	8	55.5	QH	9	55.5	QH	
4	9	fo = 57.29	QH	10	fo = 57.29	QH	
	10	fo ± 0.217	QH	11	$fo \pm 0.3222 \pm 0.217$	QH	
	11	fo±0.3222±0.048	QH	12	fo± 0.3222±0.048	QH	
	12	fo $\pm 0.3222 \pm 0.022$	QH	13	fo±0.3222±0.022	QH	
	13	fo± 0.3222±0.010	QH	14	fo±0.3222 ±0.010	QH	
	14	fo±0.3222±0.004 5	QH	15	fo± 0.3222±0.0045	QH	
	15	89.0	QV				
HS	16	89.0	QV	16	88.2	QV	
Σ	17	157.0	QV	17	165.5	QH	
	18	183.31 ± 1	QH	18	183.31 ± 7	QH	
	19	183.31 ± 3	QH	19	183.31 ± 4.5	QH	
	20	191.31	QV	20	183.31 ± 3	QH	
				21	183.31 ± 1.8	QH	
				00	400.04 + 4		

ATMS has 22 channels and AMSU/MHS have 20, with polarization differences between some channels

QV = Quasi-vertical; polarization
 vector is parallel to the scan plane at nadir

 QH = Quasi-horizontal; polarization vector is perpendicular to the scan plane at nadir

Microwave Temperature Sounding Vertical Resolution

Beamwidth (degrees)

Spatial sampling

	ATMS	AMSU/MHS		ATMS	AMSU/MHS
23/31 GHz	5.2	3.3	23/31 GHz	1.11	3.33
50-60 GHz	2.2	3.3	50-60 GHz	1.11	3.33
89-GHz	2.2	1.1	89-GHz	1.11	1.11
160-183 GHz	1.1	1.1	160-183 GHz	1.11	1.11
		Swath (km)	~2600	~2200	

ATMS scan period: 8/3 sec; AMSU-A scan period: 8 sec ATMS measures 96 footprints per scan (30/90 for AMSU-A/B)

NOAA, NPP and FY-3 MW Sounder FOV

ATMS Storm Mapping: Improvements Relative to AMSU

Black and red circles highlight "before" and "after" differences between AMSU and ATMS, and between ATMS and ATMS-sharpened, for six simulated storms validated with AMSU. Note the better definition of strong convective cells with ATMS due to its 33-km resolution and Nyquist sampling, and the better recovery of the warm rain with sharpening

Source: Surussavadee and Staelin, NASA PMM Presentation, 7/08

STAR ICVS Website

STAR Center for Satellite Applications and Research formerly ORA – Office of Research and Applications

NOAA Satellite and Information Service V

Skip top Navigation

STAR

Search STAR websites Go STAR Integrated Calibration/Validation System (ICVS) for NPP/JPSS Instrument Performance Monitoring - Telemetry >> **ATMS Channel NEdT ATMS Warm Calibration Count ATMS Channel Gain ATMS Cold Calibration Count ONPP S/C Telemetry** All Channel Snapshot \$ Display All Channel Snapshot \$ All Channel Snapshot \$ All Channel Snapshot \$ Display Display Display NPP ATMS >> **ONPP Cris** ATMS 4-Wire PRTs ATMS Receiver Shelf 2-Wire PRTs ATMS 2-Wire PRT (27 PRTs) **ONPP VIIRS** K-Band Receiver Front End Temperature K,Ka,V-Band Sensor \$ Display K-Band ‡ Display * Display **ONPP OMPS** ATMS Health/Status Analog Parameters (35 Index) »Instrument Performance Monitoring - Bias Signal Processing Assembly +5V Seconary Voltage \$ Display

NASA

First global ATMS image showing the channel 18microwave antenna temperature at 183.3 GHz on November 8, 2011

265

245

255

The ATMS data were processed at the NOAA Satellite Operations Facility (NSOF) in Suitland, MD and the image was generated by STAR

Quality of the image is superb, no indication of instrument artifacts, and by design no orbital gaps

This channel measures atmospheric water vapor; note that Tropical Storm Sean is visible in the data, as the blue patch due to heavy precipitation, in the Atlantic off the coast of the Southeastern United States. *ATMS provides critical water vapor information for weather forecasting and storm intensity assessments*

275

Т

NOAA ATMS MIRS Products

MIRS NPP/ATMS Water Vapor Content (g/kg) at 500mb 2012-01-06 Asc (V2848)

MIRS NPP/ATMS TPW (mm) 2012-01-06 Asc (V2848)

MIRS NPP/ATMS Rain Rate (mm/hr) 2012-01-04 Des (V2843)

ATMS has better spatial resolution and no gaps

LIMB ADJUSTMENT - TRANSFORMING A CROSS TRACK SENSOR TO AN IMAGER

Brightness Temperature Map for Channel 3, 2012/02/27

Visible Infrared Imaging Radiometer Suite Raytheon SAS El Segundo, Ca

Description

- <u>Purpose</u>: Global observations of land, ocean, & atmosphere parameters at high temporal resolution (~ daily)
- Predecessor Instruments: AVHRR, OLS, MODIS, SeaWiFS
- <u>Approach</u>: Multi-spectral scanning radiometer (22 bands between 0.4 μm and 12 μm) 12-bit quantization
- Swath width: 3000 km

Spatial Resolution

- 16 bands at 750m
- 5 bands at 325m
- DNB

VIIRS on NPP

VIIRS Prelaunch Performance (NPP F1 Bands and SNR/NEDT)

				Specification								
		Band No.	Driving EDR(s)	Spectral Range (um)	Horiz Sample (track Nadir	e Interval (km) x Scan) End of Scan	Band Gain	Ltyp or Ttyp (Spec)	Lmax or Tmax	SNR or NEdT (K)	Measured SNR or NEdT (K)	SNR Margin (%)
		M1	Ocean Color Aerosol	0.402 - 0.422	0.742 x 0.259	1.60 x 1.58	High Low	44.9 155	135 615	352 316	723 1327	105% 320%
		M2	Ocean Color Aerosol	0.436 - 0.454	0.742 x 0.259	1.60 x 1.58	High Low	40 146	127 687	380 409	576 1076	51.5% 163%
		М3	Ocean Color Aerosol	0.478 - 0.498	0.742 x 0.259	1.60 x 1.58	High Low	32 123	107 702	416 414	658 1055	58.2% 155%
<u>s</u>	sNIR	M4	Ocean Color Aerosol	0.545 - 0.565	0.742 x 0.259	1.60 x 1.58	High Low	21 90	78 667	362 315	558 882	54.1% 180%
pug	Vis	l1	Imagery EDR	0.600 - 0.680	0.371 x 0.387	0.80 x 0.789	Single	22	718	119	265	122.7%
ve Ba		M5	Ocean Color Aerosol	0.662 - 0.682	0.742 x 0.259	1.60 x 1.58	High Low	10 68	59 651	242 360	360 847	49% 135%
Ċţ		M6	Atmosph. Correct.	0.739 - 0.754	0.742 x 0.776	1.60 x 1.58	Single	9.6	41	199	394	98.0%
ŝfle		12	NDVI	0.846 - 0.885	0.371 x 0.387	0.80 x 0.789	Single	25	349	150	299	99.3%
Å		M7	Ocean Color Aerosol	0.846 - 0.885	0.742 x 0.259	1.60 x 1.58	High Low	6.4 33.4	29 349	215 340	545 899	154% 164%
		M8	Cloud Particle Size	1.230 - 1.250	0.742 x 0.776	1.60 x 1.58	Single	5.4	165	74	349	371.6%
		M9	Cirrius/Cloud Cover	1.371 - 1.386	0.742 x 0.776	1.60 x 1.58	Single	6	77.1	83	247	197.6%
		13	Binary Snow Map	1.580 - 1.640	0.371 x 0.387	0.80 x 0.789	Single	7.3	72.5	6	165	2650.0%
	ЛIR	M10	Snow Fraction	1.580 - 1.640	0.742 x 0.776	1.60 x 1.58	Single	7.3	71.2	342	695	103.2%
	WN	M11	Clouds	2.225 - 2.275	0.742 x 0.776	1.60 x 1.58	Single	0.12	31.8	10	18	80.0%
	s/	14	Imagery Clouds	3.550 - 3.930	0.371 x 0.387	0.80 x 0.789	Single	270	353	2.5	0.4	84.0%
spu		M12	SST	3.660 - 3.840	0.742 x 0.776	1.60 x 1.58	Single	270	353	0.396	0.12	69.7%
e Bar		M13	SST Fires	3.973 - 4.128	0.742 x 0.259	1.60 x 1.58	High Low	300 380	343 634	0.107 0.423	0.044 	59%
sive		M14	Cloud Top Properties	8.400 - 8.700	0.742 x 0.776	1.60 x 1.58	Single	270	336	0.091	0.054	40.7%
nis	NR	M15	SST	10.263 - 11.263	0.742 x 0.776	1.60 x 1.58	Single	300	343	0.07	0.028	60.0%
Ел	Z	15	Cloud Imagery	10.500 - 12.400	0.371 x 0.387	0.80 x 0.789	Single	210	340	1.5	0.41	72.7%
		M16	SST	11.538 - 12.488	0.742 x 0.776	1.60 x 1.58	Single	300	340	0.072	0.036	50.0%

HSI uses 3 in-scan pixels aggregation at Nadir

Courtesy of H. Oudrari

Comparison of "Imagery" Bands at Nadir

1.1 km 0.25 – 1 km 0.37 km

VIIRS has a very large cross track and near constant spatial resolution

Figure 3.2.3: Illustration of MODIS data acquisition on the EOS-AM platform (not to scale). The bidirectional reflectance distribution function (BRDF) changes with view and sun geometry. Notice the shadow caused by clouds and canopy. MODIS pixel dimensions, cross-track and along-track, change with scan angles: 0° - 250 x 250 m; 15° - 270 x 260 m; 30° - 350 x 285 m; 45° - 610 x 380 m

First Global VIIRS Image

VIIRS RGB (True Color), 20111122 R : M05 (0.672 μ m); G : M04 (0.555 μ m); B : M02 (0.445 μ m)

Colorado

11.24.2011 1845 Z, Near Edge of Scan

11.24.2011 2028 UTC, Near Nadir

 \rightarrow VIIRS maintains similar spatial resolution quality at edge of 3000 km swath

Edge of Scan Intercomparisons

Multi-spectral Comparisons

True color - Northeast US

MODIS

1840z

VIIRS

1845Z

Multi-spectral Comparisons

True color – New Orleans

Resolution consistency across swath bodes well for AMV fidelity

<u>ERA</u>

VIIRS Day Night Band

Geolocation not corrected

Enhanced city light definition due to spatial resolution and quantizatio

CIRA

Moonlight Imagery

Nighttime Imagery: 1/5/2012 0053 UTC, Mediterranean Region

Moonglint scenes showcase the tremendous dynamic range and radiometric resolution of the new DNB sensor.

Moonlight Imagery

Nighttime Imagery: 1/5/2012 0920 UTC, Western U.S.

Dust Storm

Nighttime Imagery: 1/7/2012 2359 UTC, Eastern Mediterranean

Volcanic Ash Puyehue-Cordon Caulle Volcanic Chain 12-13 Dec 2011

Nighttime pass fills in the temporal gap between last PM and first available AM visible-light observations.

The Korean Strait

VIIRS Nighttime Visible - DNB

Tropical Cyclone 06S Heidi

VIIRS 1750 OLS 2005 OLS 2129

OMPS Instrument Design

Nadir Mapper

UV Backscatter, grating spectrometer, 2-D CCD TOMS, SBUV(/2), GOME(-2), OMI

110 deg. cross track, 300 to 380 nm spectral, 1.1nm FWHM bandpass

Total Column Ozone, UV Effective Reflectivity, and Aerosol Index Daily Maps

Nadir Profiler

UV Backscatter, grating spectrometer, 2-D CCD SBUV(/2), GOME(-2), OMI

Nadir view, 250 km cross track, 270 to 310 nm spectral, 1.1 nm FWHM bandpass Ozone Vertical Profile, 7 to 10 KM resolution

Limb Profiler

UV/Visible Limb Scatter, prism, 2-D CCD array SOLSE/LORE, OSIRIS, SAGE III, SCIAMACHY Three 100-KM vertical slits, 290 to 1000 nm spectral Ozone Vertical Profile, 3 KM vertical resolution

The calibration concepts use working and reference solar diffusers.

OMPS provides continuity of essential ozone products and applications

Monitoring ozone hole and recovering of ozone due to the Montreal Protocol for eliminating Chlorofluorocarbons (CFCs)

Used in NWS UV Index forecast to allow public to avoid overexposure to UV radiation

Ozone Monitoring and Profiling Suite Regular Operations: January 27, 2012

OMPS First Light Research Algorithms

OMPS First Operational Data

CERES Instrument Overview

Critical Resource Margins

	CERES Value	Allocation	Margin
Mass, kg	46.8	54	13.3%
Power: Operational, Watts	45.85	50	8.3%
Power: Peak, Watts	60	75	20.0%
Power: Survival, Watts	39.5	40	1.3%
Heat Transfer - Hot Case, Watts	4.1	±5 W	18.0%
Heat Transfer - Cold Case, Watts	-1.7	±5 W	66.0%
Data Rate, Kb / sec	10	10	0
Pointing Control, arcsec	< 114	194	41.2%
Pointing Knowledge, arcsec	< 107	180	40.6%

Primary CERES Climate Data Records

Reflected Solar Energy

Emitted Thermal Energy

Earth Radiation Budget

From IPCC AR4 FAQ

CERES Flight Model 5 First Light Data: January 26, 2012

CERES scanning radiometer measuring three spectral bands at TOA

- Total (0.3 to >50 μm)
- Shortwave (0.3 to 5.0 $\mu\text{m})$
- Longwave Bandpass (8 to 12 $\mu m)$

Operations, Data Processing, Products, and Science are a continuation of experience developed on

- TRMM (1), EOS Terra (2), EOS Aqua (2)

Reflected Solar Energy

Emitted Thermal Energy

65

Overview of AMSR2 instrument on GCOM

Deployed

Deployable main reflector system with 2.0m diameter.

- Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.
- 2-point external calibration with the improved HTS (hot-load).

AMSR2 characteristics						
Scan	Conical scan					
Swath width	1450km					
Antenna	2.0m offset parabola					
Digitalization	12bit					
Incidence angle	nominal 55 degree					
Polarization	Vertical and Horizontal					
Dynamic range	2.7-340K					

AMSR2 Channel Set										
Center Freq. [GHz]	Band width [MHz]	Polariz ation	Beam width [deg] (Ground res. [km])	Sampling interval [km]						
6.925/ 7.3	350		1.8 (35 x 62)							
			1.7 (34 x 58)							
10.65	100	v	1.2 (24 x 42)	10						
18.7	200	and	0.65 (14 x 22)	10						
23.8	400	H 0.75 (15 x 26)								
36.5	1000		0.35 (7 x 12)							
89.0	9.0 3000		0.15 (3 x 5)	5						

66

Overview of AMSR2 Products

Geophysical products	Comments
Integrated water vapor	Over global ocean [*] , columnar integrated value
Integrated cloud liquid water	Over global ocean [*] , columnar integrated value
Precipitation	Global (except over ice and snow), surface rain rate
Sea surface temperature	Global ocean [*]
Sea surface wind speed	Global ocean [*]
Sea ice concentration	High latitude ocean areas
Snow depth	Land surface (except dense forest regions)
Soil moisture	Land surface (except ice sheet and dense forest regions)

JPSS Mission will provide:

Input Observations for Weather Forecast Models CrIS, ATMS, VIIRS, OMPS & GCOM

Short term Environmental Observations (Events) VIIRS, OMPS, CrIS, ATMS & GCOM

Long term Environmental Observations (Climate Change Detection) CERES, TSIS, VIIRS, OMPS, CrIS, ATMS & GCOM

User Engagement is critical for ultimate mission success

Backup

Sustaining User Engagement is part of the JPSS Program

Demonstrate importance of NPP data to the Nation and to critical operational product and services and for improved research

Established a JPSS Proving Ground to focus on improved utilization of NPP/JPSS data for key application areas

Tropical Cyclone Applications

- Cryosphere Applications
- Severe Weather/Aviation Applications
- Ocean/Coastal Applications (Coral Bleaching, Harmful Algae Bloom alerts)
- Land Applications (Agriculture, Droughts)
- Hazards Applications (Smoke, Fire, Aerosols, Air Quality, Flash Floods)
- Data Assimilation Applications
- Imagery/Visualization Applications
- Climate Applications

Backup Slides

AVHRR	MODIS	VIIRS	
 580 - 680 840 - 940 3.55 - 3.93 4.0.3 - 11.3 5.11.5 - 12.5 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 $402 - 422 (750m)$ M2 $436 - 464$ M3 $478 - 498$ M4 $545 - 565$ I1 $580 - 680 (375m)$ M5 $662 - 682$ M6 $744 - 758$ M7 $845 - 885$ I2 $845 - 885$ M8 $1.23 - 1.25$ M9 $1.371 - 1.385$ M10 $1.58 - 1.64$ I3 $1.58 - 1.64$ I3 $1.58 - 1.64$ M11 $2.235 - 2.285$ M12 $3.61 - 3.79$ I4 $3.55 - 3.93$ M13 $3.97 - 4.13$ M14 $8.40 - 8.7$ M15 $10.3 - 11.3$ M16 $11.5 - 12.5$ I5 $10.6 - 12.5$	1 $450 - 490 (1 \text{ km})$ 2 $590 - 690 (.5)$ 3 $846 - 885 (1)$ 4 $1.37 - 1.39 (2)$ 5 $1.58 - 1.64 (1)$ 6 $2.23 - 2.28 (2)$ 7 $3.8 - 4.0$ 8 $5.77 - 6.6$ 9 $6.75 - 7.15$ 10 $7.24 - 7.44$ 11 $8.3 - 8.7$ 12 $9.42 - 9.8$ 13 $10.1 - 10.6$ 14 $10.8 - 11.6$ 15 $11.8 - 12.8$ 16 $13.0 - 13.6$
	30 I4.I – I4.4		73

VIIRS Improvements From AVHRR: Radiometric properties

Greater spectral coverage with increased radiometric quality

VIIRS				MODIS Equivale	ent	AVHRR-3 Equivalent				OLS Equivalent		
Band	Range (um)	HSR (m)	Band	Range	HSR	Band	Range	HSR	Band	Range	I HSR	
DNB	0.500 - 0.900	750			ļ	. L	ow light capabil	lities	HRD PMT	0.580 - 0.910 0.510 - 0.860	550 2700	
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000						I	
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000	-						
М3	0.478 - 0.498	750	3 10	0.459 - 0.479 0.483 - 0.493	500 1000	c	cean Color, Aer	osol			1	
M4	0.545 - 0.565	750	4 12	0.545 - 0.565 0.546 - 0.556	500 1000						1	
l1	0.600 - 0.680	375	1	0.620 - 0.670	250	1	0.572 - 0.703	1100			I	
M5	0.662 - 0.682	750	13 14	0.662 - 0.672 0.673 - 0.683	1000 1000	1	0.572 - 0.703	1100			1	
M6	0.739 - 0.754	750	15	0.743 - 0.753	1000		Atm Correctio	n			l	
12	0.846 - 0.885	375	2	0.841 - 0.876	250	2	0.720 - 1.000	1100				
M7	0.846 - 0.885	750	16	0.862 - 0.877	1000	2	0.720 - 1.000	1100				
M8	1.230 - 1.250	750	5	SAME	500		Cloud Particle S	ize				
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000		Thin Cirrus					
13	1.580 - 1.640	375	6	1.628 - 1.652	500		Snow Map					
M10	1.580 - 1.640	750	6	1.628 - 1.652	500	3a	SAME	1100			-	
M11	2.225 - 2.275	750	7	2.105 - 2.155	500		Cloud					
14	3.550 - 3.930	375	20	3.660 - 3.840	1000	3b	SAME	1100			I	
M12	3.660 - 3.840	750	20	SAME	1000	3b	3.550 - 3.930	1100			I	
M13	3.973 - 4.128	750	21 22 23	3.929 - 3.989 3.929 - 3.989 4.020 - 4.080	1000 1000 1000		SST, Fire				1 1 1	
M14	8.400 - 8.700	750	29	SAME	1000	С	oud Top Propoe	erties			I	
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000	4	10.300 - 11.300	1100			1	
15	10.500 - 12.400	375	31 32	10.780 - 11.280 11.770 - 12.270	1000 1000	4 5	10.300 - 11.300 11.500 - 12.500	1100 1100	HRD	10.300 - 12.900	 550 	
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000	5	11.500 - 12.500	1100				