Initial results from using ATMS and CrIS data at ECMWF

Niels Bormann¹, William Bell¹, Anne Fouilloux¹, Tony McNally¹, Ioannis Mallas¹, Nigel Atkinson², Steve Swadley³

¹ ECMWF, ² Met Office, ³ NRL

Initial results from using ATMS

Niels Bormann¹, William Bell¹, Anne Fouilloux¹, Tony McNally¹, Ioannis Mallas¹, Nigel Atkinson², Steve Swadley³

¹ ECMWF, ² Met Office, ³ NRL

ATMS

- Microwave sounder combining AMSU-A and MHS heritage channels, with 3 new channels.
- Temperature sounding channels compared to AMSU-A:
 - ➤ Higher noise
 - Smaller footprint
 - > Oversampled

AMSU-A

ATMS

	2
	2
al results from using ATMS data at ECMWF, ITSC-1	-
	2

Frequency [GHz]	Polarisation
23.8	QV
31.4	QV
50.3	QH
51.76	QH
52.8	QH
53.596 ± 0.115	QH
54.4	QH
54.94	QH
55.5	QH
57.29	QH
57.29±0.3222±0.217	QH
57.29±0.3222±0.048	QH
57.29±0.3222±0.022	QH
57.29±0.3222±0.010	QH
57.29±0.3222±0.0045	QH
88.2	QV
165.5	QH
183.31±7	QH
183.31±4.5	QH
183.31±3	QH
183.31±1.8	QH
183.31±1	QH
	Frequency [GHz] 23.8 31.4 31.4 50.3 51.76 52.8 53.596 ± 0.115 54.4 54.94 55.5 57.29±0.3222±0.217 57.29±0.3222±0.048 57.29±0.3222±0.048 57.29±0.3222±0.048 57.29±0.3222±0.010 57.29±0.3222±0.0045 88.2 165.5 183.31±7 183.31±7 183.31±3 183.31±3 183.31±3 183.31±1.8 183.31±1.8

MHS

Outline

1) Analysis of departure statistics

- 2) Preliminary assimilation experiments
- 3) Conclusions

ATMS data: First impression

- Assessments based on ATMS data before antenna pattern correction.
- Mostly based on 3x3 averaged data for channels 3-22.
- Larger swath for ATMS = better spatial coverage.
- Better scanbiases than AMSU-A.
- ATMS data look generally ok.

Initial results from using ATMS data at ECMWF, I

Scan bias: Comparison to NOAA-18

Standard deviations and averaging...

Data for 20-29 Dec 2011, over sea, after QC and bias correction

Obs-FG standard deviation [K]

Standard deviations and averaging...

Data for 20-29 Dec 2011, over sea, after QC and bias correction

Obs-FG standard deviation [K]

Comparison to AMSU-As (for ATMS 3x3)

Initial results from using ATMS data at ECMWF, ITSC-18, Toulouse, March 2012

ATMS channel number

Day-to-day stability

Channel 11, tropics:

ECMWF

Bias correction – 0.29 K

Inter-channel error correlation diagnostics

(based on Desroziers et al. 2005)

Inter-channel error correlation diagnostics

(based on Desroziers et al. 2005)

ATMS (3x3): 0.95 22 0.9 21 0.85 0.8 20 0.75 0.7 19 0.65 NOAA-18 AMSU-A: 0.6 18 0.55 0.5 14 -15 0.45 Channel number 13 0.4 14 0.35 12 -13 0.3 0.25 11 12 Channel number 0.2 0.15 10 11 0.1 0.05 9 10 0 -0.05 8 9 -0.1-0.15 7 -8 -0.2 -0.25 6 7 -0.3 5 -6 -0.35 -0.555 6 q 10 11 12 13 14 6 7 8 9 10 11 12 13 14 15 18 19 20 21 22 Channel number Channel number

ECMWF

ATMS channel 11, bias

Variability by scanline

- Variability of biases by scanline appear higher for ATMS than for AMSU-A.
- Room for improvement in calibration for ATMS?

ATMS channel 11, standard deviation

Outline

- 1) Analysis of departure statistics
- 2) Preliminary assimilation experiments
- 3) Conclusions

Preliminary assimilation experiments

- Period: 15 Dec 2011 6 Feb 2012
- Resolution: T319 (~60 km)
- ATMS data: 3x3 averaged for channels 3-22
- Quality control for ATMS:
 - Use data only over open sea
 - Use all scan positions
 - Use channels 6-15 & 18-22
 - Screening for cloud/rain:
 - | (Obs-FG)_{ch3}| > 5 K for ch 6-8; 18-22
 - LWP > 0.12 kg/m² for ch 6, 7, 18; > 0.15 kg/m² for ch 8
 - Scatter index (89/165 GHz) > 10 for channels 18-22
 - Observation error for channels 7-11: 0.35 K

Improvements for short-term humidity forecasts

Standard deviation of FG departures for all used MHS data combined:

Similar improvements for humidity channels from HIRS, AIRS, IASI.

Forecast impact

Normalised difference in RMSE for 500 hPa geopotential, verified against own analysis (46-54 cases), with 95 % confidence intervals :

Preliminary conclusions

- Scan-biases for ATMS look smoother than for AMSU-A even without an antenna pattern correction applied to ATMS data.
- Noise performance of temperature sounding channels against short-term forecasts looks good:
 - (At least) comparable to AMSU-A after 3x3 averaging.
 - However, some errors appear correlated; possibly room for improvement for calibration?

Preliminary assimilation experiments suggest:

- Positive impact on humidity analyses.
- Positive forecast impact over the Southern Hemisphere.

Standard deviation [K]

Comparison to AMSU-As

ATMS channel number

Histograms of Obs-FG: Effect of averaging

(Statistics for used data, 20-29 Dec 2011; global over sea, after bias correction)

