

Hyperspectral Microwave Atmospheric Sounding

W. J. Blackwell, L. J. Bickmeier, R. V. Leslie, M. L. Pieper, J. E. Samra, and C. Surussavadee¹

April 14, 2010 ITSC-17

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

¹C. Surussavadee is Head of the Andaman Environment and Natural Disaster Research Center, Phuket, Thailand

MIT Lincoln Laboratory

GeoMAS: 1 WJB 4/13/10

- "Hyperspectral" measurements allow the determination of the Earth's tropospheric temperature with vertical resolution exceeding 1km
 - ~100 channels in the microwave
- Hyperspectral infrared sensors available since the 90's
 - Clouds substantially degrade the information content
 - A hyperspectral microwave sensor is therefore highly desirable
- Several recent enabling technologies make HyMW feasible:
 - Detailed physical/microphysical atmospheric and sensor models
 - Advanced, signal-processing based retrieval algorithms
 - RF receivers are more sensitive and more compact/integrated
- The key idea: Use RF receiver arrays to build up information in the spectral domain (versus spatial domain for STAR systems)

- Hyperspectral microwave sounding
 - "Spectral multiplexing" concept
 - Temperature weighting function analysis
- GEO performance comparisons
 - <u>Precipitation and All-weather Temperature and Humidity (PATH)</u>
 - GeoMAS (118/183 GHz): Geostationary Microwave Array Spectrometer
 - Compare with "GeoAMSU" synthetic aperture system
- LEO performance comparisons
 - HyMAS (60/183 GHz): <u>Hyperspectral Microwave Array Spectrometer</u>
 - Compare with AIRS + AMSUA + HSB
- Summary and path forward

Atmospheric Transmission at Microwave Wavelengths

The frequency dependence of atmospheric absorption allows different altitudes to be sensed by spacing channels along absorption lines

<u>Geo</u>stationary <u>Microwave Array Spectrometer:</u> Nominal GeoMAS Beam Layout

Array microscans; every spot on the ground is measured by 88 channels

Spectral Multiplexing Concept (1/8)

Spectral Multiplexing Concept (2/8)

Spectral Multiplexing Concept (3/8)

Spectral Multiplexing Concept (4/8)

Spectral Multiplexing Concept (5/8)

Spectral Multiplexing Concept (6/8)

Spectral Multiplexing Concept (7/8)

Spectral Multiplexing Concept (8/8)

GeoMAS versus "Traditional" 60-GHz Bands

- Other approaches using a single receiver:
 - Simply sweep the receiver local oscillator (LO) to achieve many channels
 - Add a high-resolution digital backend to achieve many channels
- The array approach provides very large <u>effective bandwidth</u>

State-of-the-art Physical Models Used for Simulation Analyses

- Cloud-resolving atmospheric model (MM5)
- Ocean surface emissivity model
- Random land surface emissivity model
- Line-by-line transmittance model with <u>detailed scattering</u>

Global Profile Sets for Performance Assessments

MM5
+ NOAA88b

MM5 characterized by high water content NOAA88b characterized by high variability

GeoMAS Channels

(coverage of 10,000x10,000 km² area in 15 min is assumed)

- GeoMAS 118-GHz
 - 64 channels on the low-frequency side of the 118.75-GHz line $\Delta T_{RMS} = 0.2 \text{ K}$
- GeoMAS 118-GHz + 183-GHz
 - 64 channels on the low-freq side of the 118.75-GHz oxygen line
 - 16 channels within +/- 10 GHz of 183.83-GHz water vapor line $\Delta T_{RMS} = 0.25 \text{ K}$
- "GeoMAS 88" (89-GHz + 118-GHz + 183-GHz)
 - 64 channels on the low-freq side of the 118.75-GHz oxygen line
 - 16 channels within +/- 10 GHz of 183.83-GHz water vapor line
 - 8 channels at 89 +/- 0.5 GHz

ΔT_{RMS} = 0.15 K

Half the channels at each band are H-pol, the other half are V-pol

Synthetic <u>Thinned Aperture Radiometer</u> (STAR) Assumptions

- Six oxygen channels (identical to AMSU-A):
 - 50.3, 52.8, 53.596, 54.4, 54.94, 55.5 GHz
 - ΔT_{RMS} : 0.5, 0.35, 0.5, 0.35, 0.35, 0.35 K
- Four water vapor channels (three identical to AMSU-B):
 - 183.31 ± 1, 3, and 7 GHz; 167 GHz
 - ΔT_{RMS}: 1, 0.71, 0.5, 0.71 K
- Fundamental receiver parameters (T_{sys} and τ) identical to those used for GeoMAS

B. Lambrigtsen, S. Brown, T. Gaier, P. Kangaslahti, and A. Tanner, "A baseline for the decadal-survey PATH mission," *Proc. IGARSS*, vol. 3, July 2008, pp. 338–341.

Temperature Retrieval Performance GeoMAS versus "GeoAMSU"

Water Vapor Retrieval Performance GeoMAS versus "GeoAMSU"

Precipitation Retrieval Performance: GeoMAS Superior for All Rain Rates

RAIN-RATE RETRIEVAL PERFORMANCE (RMS ERROR IN MM/H) FOR THE GEOMAS AND STAR SYSTEMS AT 25-KM SPATIAL RESOLUTION.

Rain-rate Range (mm/h)	GeoMAS (mm/h)	STAR (mm/h)
1-4	1.5	1.5
4-8	3.4	3.7
8-16	6.0	6.8
16-32	10.2	10.6
32-64	16.9	17.9

AIRS Level 2 Profile Database: Global, Non-frozen Ocean

Water Vapor Retrieval Performance AIRS/AMSU/HSB Versus HyMAS 60-GHz

AIRS Level 2 Profile Database: Global, Non-frozen Ocean

GeoMAS: 24 WJB 4/13/10

- Hyperspectral microwave sensors could change the landscape of atmospheric sounding (LEO and GEO)
- GeoMAS performance superior to current geostationary microwave state-of-the-art
 - Temperature, water vapor, and precipitation mapping
- HyMAS performance exceeds AIRS+AMSU, especially in clouds
- Hyperspectral microwave would provide advanced sounding capability
 - Complementary to hyperspectral IR (improved CO2 retrievals expected)
 - Complementary to infrared ABI (rapid scan imaging of severe weather in tandem with ABI would provide quantum leap forward)
- Next steps
 - HyMAS/GeoMAS channel optimization; more channels; image sharpening
 - Detailed sensitivity studies (recent correlated error analyses promising)
 - Hardware demonstration (airborne prototype)

- "Hyperspectral Microwave Atmospheric Sounding," Blackwell, et al., under review (IEEE TGRS)
- "Scientific Arguments for a Hyperspectral Microwave Sensor," Boukabara, et al., EUMETSAT conference, September 2010
- "Improved All-Weather Atmospheric Sounding Using Hyperspectral Microwave Observations," Blackwell, et al., IGARSS 2010
- Previous presentations available (AMS, URSI, and MicroRad)

Backup Slides

MIT Lincoln Laboratory

GeoMAS: 27 WJB 4/13/10

GeoMAS Performance Superior, Even for Low Transmittance (High Water Content)

- Global all-weather observations of precipitation, temperature, and humidity are needed to drive weather forecast models
- These observations require space-based sensors measuring upwelling thermal radiance spectra
- Microwave observations are needed to provide cloud penetration
- Most weather develops over many hours so that existing multiple LEO sounders provide sufficiently frequent coverage
- Severe weather events are a critical exception, usually cloud shrouded; key observables vary within ~15 km and ~15 minutes

These attributes motivate a geostationary microwave sensor

Transmittance Calculations in Clouds (Non-Precipitating Pixels)

MIT Lincoln Laboratory

GeoMAS: 30 WJB 4/13/10

GeoMAS Beam Sampling Each Pixel is Eventually Sampled at All Freqs

Cross hatching indicates different frequency bands MIT Lincoln Laboratory Blue circles denote pixels that have been fully sampled

- Unknown array spatial misalignments
 - Small effect, due to broad beams, but non-negligible
 - Modeling included in our simulation study (slides to come)
- Spatial nonhomogeneities in scene
 - Clouds, surface, water vapor, etc.
 - Modeling included in our simulation study (slides to come)
- Forward model errors
 - Transmittance, cloud/microphysical, surface, etc.
 - Modeling included in our simulation study (slides to come)

- Substantial advantage in the retrieval of sea surface temperature:
 - Better storm tracking and intensification prediction
 - More accurate long-term weather forecasts
- Marked advantage in atmospheric profile retrieval
 - Improved initialization of numerical forecast models
 - Areas in and around precipitation are most critical
- Synoptic coverage provided by LEO sounders sets "background error" that approaches 0.2K in mid troposphere
 - GEO soundings must be very accurate to positively impact current models
 - Sampling of diurnal variations in temperature and moisture are not provided by LEO observations

Comparison of GeoSTAR and GeoMAS

¹Lambrigtsen, et al., IGARSS 2008 ²Staelin, et al., GEM Working Group Report to GOES Program Office, 1997

	GeoMAS	STAR
Antenna feeds	8	~ 900
Receiver banks	16	~ 900
High-speed digitizers	0	$\sim 1,800$
High-speed correlators	0	>600,000
Mass (kg) and power (W) estimates	70, 50	250, 350
Channels	~ 100	~ 10
Temperature pixels @ 50 km	40,000	40,000
Water Vapor / Precip pixels @ 25 km	160,000	160,000
Nominal coverage time	15 min	15 min
Temp and water vapor performance	YES	NO
exceeds 1.25 K / 25% RMS		
Compatible with GOES ABI	YES	NO
rapid scan imaging mode		
Momentum impact	VERY LOW	NONE
to spacecraft	(tolerable)	
Spaceflight heritage at similar freq.	AMSU/ATMS,	NONE
	SSMIS, MLS	

Temperature Retrieval Performance

Temperature Retrieval Performance

Water Vapor Retrieval Performance

Water Vapor Retrieval Performance

