

Advances of the Community Surface Emissivity Models (CSEM) in Support of NWP Data Assimilation

Ming Chen¹, Kevin Garrett² and Yanqiu Zhu³

Cooperative Institute for Climate and Satellite, UMD
NOAA Center for Satellite Applications and Research
I. M. System Group at NCEP/EMC

ITSC-22: Saint-Sauveur, Québec, Canada, 31 October - 6 November 2019

Outline

- 1. A short introduction to the CSEM framework and the surface emissivity models currently implemented
- 2. Improvements of the existing physical MW land surface emissivity model
- 3. Development of the prognostic MW land surface emissivity model based on machine learning
- 4. Summary and further efforts

Developed from CRTM surface modules, but with refined software structures based on OOP design to ease new model development efforts and to support different applications.

National Environmental Satellite,

Data. and Information Service

NORR

- Emissivity & BRDF simulations of visible, infrared and microwave channels over all surface types (land, water, snow and sea ice, desert).
- Forward, tangent-linear, and adjoint operators to support surface data assimilation and surface variational retrievals.

Top-Down: abstract layer for different apps

Bottom-Up: abstract containers to facilitate new model development & to support multiple model options

3

CSEM Model Register & Configuration File

A formatted text file is used as Algorithm Register for developers to easily add their new models to the model # repository, and meanwhile serves as a Configuration file for users to specify model options in research or # operational applications.

# Special Chars "	[]	" M	lodel Class	" , " - Delimiter	"#"	- Co	omment lines				
[MW_LAND]				[IR_LAND]				[VIS_LAND]			
NESDIS_Land_MW	,	1		NPOESS_LUT	,	1		NPOESS_LUT	,	1	
NESDIS_Land_MW213	,	0		UWIR_ATLAS	,	0	./fix	RTTOV_BRDF_ATLAS	, (0	./fix
TELSEM_ATLAS_V1	,	0,	./fix								
TELSEM_ATLAS_V2	,	0,	./fix								
CNRM_AMSUA_ATLAS	3,	0,	./fix								
[MW_WATER]				[IR_WATER]				[VIS_WATER]			
NESDIS_FASTEM_V5	,	0,	./fix	NESDIS_IRW_Nalli	,	1,	./fix	NPOESS_LUT	,	1,	
NESDIS_FASTEM_V6	,	1,	./fix	NESDIS_IRW_WuSmith	,	0,	./fix	RTTOV_VIS_BRDF	, (Э,	
RTTOV_FASTEM_V5	,	0,		NPOESS_LUT	,	0,					
RTTOV_FASTEM_V6	,	0,		RTTOV_IRSSEM_V1D1	,	0,	./fix				
RTTOV_TESSEM	,	0,		RTTOV_IRSSEM_V2D1	,	0,	./fix				
[MW_SNOW]				[IR_SNOW]				[VIS_SNOW]			
NESDIS_Snow_MW	,	0		NPOESS_LUT	,	1		NPOESS_LUT	,	1	
SensorBased	,	1									
[MW_ICE]				[IR_ICE]				[VIS_ICE]			
NESDIS_Ice_MW	,	0		NPOESS_LUT	,	1		NPOESS_LUT	,	1	
SensorBased	,	1									

National Environmental Satellite, Data, and Information Service

Microwave Physical Land Emissivity Model of Three Dielectric Medium Layer

MODEL INPUTS

- Frequency (GHz)
- Zenith_Angle
- Soil_Moisture_Content
- Vegetation_Cover_Fraction
- Soil_Temperature
- Land_Skin_Temperature
- Snow_Depth
- Leaf_Area_Index (LAI)

MODEL OUTPUTS

Emissivity V_Pol Emissivity H_Pol

Weng et al, 2001; Chen & Weng, 2016

- Two-Stream Physical RT Model
- Volumetric scattering of the middle layer
- Reflection at medium interfaces are considered.
- Roughness attenuation & polarization mixing
- Angular dependency
- Calibrated Range: 19GHz to 89 GHz

NORR

Type-based Static Built-in Parameters of MW Physical Land Model

TYPE Vegetation_Parameters

GFS vegetation type Index (1-12)

- lthick ! leaf thickness (mm)
- langl ! canopy dominant leaf inclination angle
- vrho ! Bulk density of dry vegetation material
- vmge ! leaf gravimetric water content
- maxlai ! maximum leaf area index
- minlai ! minimum leaf area index

END TYPE Vegetation_Parameters

TYPE Soil_Parameters

GFS soil type Index (1-9)

- rhos ! density of the soil solids
- rhob ! soil bulk volume density
- sand ! sand fraction
- clay ! caly fraction

END TYPE Soil_Parameters

Options of Model Built-in Parameters GFS Type-Based (Left) Vs **STATSGO Map** (Right)

7

the State Soil Geographic (STATSGO) Dataset

Model Expansion & Dielectric Model Options

There exists large uncertainty involved in the calculation of the mediapermittivity (e.g., soil).Several soil MW permittivity model (Weng et al 2001;Wang et al, 1980;Mironov et al, 2004;Dobson et al., 1985) are implemented inCSEM for research purpose and model optimization purpose.8

National Environmental Satellite, Data, and Information Service

Impact of MW Soil Dielectric Model in CRTM Brightness Temperature Simulations

This figure shows the differences between the CRTM simulation with the "optimized" MW soil dielectric model and the default one in the current CRTM at **AMSR-2 6.9 GHz** channels.

Different soil dielectric model may result in about ±2K difference in CRTM TB simulations.

9

NORR

Improvement of Soil Surface Roughness Attenuation and Polar Mixing Models

NOAH

Implementation of Tangent-linear & Adjoint Modules of Physical MW Land Model

(2)

(1) **Surface Planck:** $\frac{\delta Tb}{\delta Tb} = \frac{\partial Tb}{\delta Tb} + \frac{\partial Tb}{\delta E} \frac{\partial E}{\delta E}$ $Tb = \varepsilon \bullet Ts$ δTs ∂Ts **Physical Emissivity:**

∂Tb ∂ε

0.05

*∂*ε*∂Ts*

280

∂Tb

 ∂Ts

276

0.500

0.480

0.460

0.440

Net LST Increament (\delta_{LST})

 $\varepsilon = \varepsilon$ (Ts, SMC, VFR...)

If Emissivity is used as an independent control variable, the property of the adjoint (K-matrix) will be totally different from the truth, which will direct the optimization algorithm of the cost function in a wrong way, and result in a misleading Ts analysis increment.

Soil Moisture Content

284

Surface Temperature (K)

0.10 0.20 0.30 0.40

Freq. 23.0GHz

288

292

National Environmental Satellite, Data, and Information Service

Application Challenges of Physical Model at Global Scale

- Insufficient characterization of spatial variation
- Desert areas
- Tundra & frozen regions

MW Land Model Based on Machine Learning

Multiple Layer Perceptron Neuron Network

- Input Layer: 6 Features
- 1st Hidden Layer: 15-30 Neurons
- 2nd Hidden Layer: 2 Neurons
- Output Layer: 2 Targets
- Levenburg-Marquardt optimizer
- Backpropogation based on adjoint coding

Training data sets

- Three months of instantaneous retrieval in GSI under strict clear-sky or non-scattering conditions with ATMS & AMSUA obs
- TELSEM2 monthly atlas
- Paired GFS surface state variables

Data Stratification by GFS Surface Types

Type Index	Type Names	Total Samples	Training Used (%)
1	E. BROADLEAF_FOREST	34000	8.8
2	D. BROADLEAF_FOREST	9100	19.7
3	E. BROADLEAF_PINE_FOREST	41000	5.8
4	E. PINE_FOREST	36700	5.9
5	D. PINE_FOREST	7700	13.7
6	BROADLEAF_BRUSH	67230	5.5
7	SCRUB	56000	8.7
8	SCRUB	703	56.9
9	SCRUB_SOIL	90000	5.5
10	TUNDRA	21200	8.0
11	COMPACTED_SOIL	50000	3.0
12	TILLED_SOIL	87600	6.1

Comparison of ML Emissivity Model With Instantaneous Analytic Retrieval and TELSEM Monthly Atlas

- Consistent spatial variations, indicating comparable quality at global scale with TELSEM
- Better performance in desert areas
- Lower performance over tundra & frozen regions (surface typing).

Brightness Temperature O-B at AMSUA 50.3GHz with ML-Based Model (left) Vs. with TELSEM2 (Right)

Summary and Further Efforts

- CSEM is a very flexible surface emissivity and BRDF modeling platform, supporting both operational and research model development and diverse applications.
- The prognostic land surface emissivity model based on machine learning shows very promising performance toward operation application in DA system. Training data sets from different seasons and sensors are needed. High resolution surface tying is essential for the model training and the model subsequent performance stability.
- Refine the artificial neuron network architecture.
- Refine the non-linear optimization algorithms, especially the computational efficiency (parallelization).
- Optimization of physical model built-in parameters