Suggesting a 1DVAR System for NWP Assimilation Pre-Processing

S.-A. Boukabara, K. Garrett, W. Chen, B. Yan, C. Kongoli, F. Weng, R. Ferraro, H. Meng and F. Iturbide-Sanchez

NOAA/Center for Satellite Applications and Research (STAR), Camp Springs, MD

16th International TOVS Study Conference (ITSC-16), Angra dos Reis, Brazil

Layout

- Scope/Agenda of the presentation
 - Present a 1DVAR system to pre-process radiances
 - Show the applicability in non-conventional areas (over land, sea ice, etc. and in cloudy/rainy conditions)
 - Promote it as a pre-processor to NWP assimilation models
- The Microwave Integrated Retrieval System
 - System Design & Mathematical Basis
 - Assimilation/Retrieval
- Potential Benefits to NWP Assimilation
 - QC & Precipitation/Ice Detection
 - Suggested sounding in Precipitating Conditions
 - Emissivity Spectrum & Surface Type Information
 - Expanded coverage

The MIRS System

System Design & Architecture

The MIRS System

Mathematical Basis: Minimization of Cost Function

$$J(X) = \left[\frac{1}{2}(X - X_0)^T \times B^{-1} \times (X - X_0)\right] + \left[\frac{1}{2}(Y^m - Y(X)^T \times E^{-1} \times (Y^m - Y(X))^T\right]$$

Atmosphere

Surface

- State Vector X comprises:
 - Temperature & Moisture profiles
 - Non-precipitating cloud profile
 - Hydrometeors profiles (liquid & frozen phases)
 - Skin Temperature
 - Surface Emissivity spectrum
- EOF Decomposition to balance X with information content of radiances Y

Assumptions in the Assimilation with MIRS (Usual suspects...)

needed for Q.

Hydr

- The PDF of X is assumed <u>Gaussian</u>
- Operator Y <u>able to simulate measurements-</u> <u>like</u> radiances
 Rely on CRTM
- Errors of the model and the instrumental noise combined are assumed (1) <u>non-biased</u> and (2) <u>Normally</u> distributed.
- Forward model assumed <u>locally linear</u> at each iteration.
 Valid assumption. Reminder: This is just the RTM FWD model. No

CRTM used in MIRS to provide:

(1) Simulation of Radiances and

(2) Jacobians for all parameters

How Does MIRS work in Precipitating Conditions ?

Example of convergence

How is Assimilation done in Cloudy/Precipitating Conditions?

- X includes clouds and Hydrometeors Parameters
- Rely on CRTM to provide radiances that account for scattering and absorption due to cloud/rain/ice
- Rely on CRTM to provide Jacobians of Radiances wrt cloud/rain/ice parameters
- Constraints provided in the Covariance Matrix

Cloud and Hydrometeors parameters are treated in a similar way as the traditional temperature and moisture parameters

No cloud resolving model is used in the forward operator

Covariance Matrix Used in MIRS

Obtained by combining ECMWF-based covariance with WRF-based correlations for rain (correlations with Ice, Temperature, Humidity, etc)

This assures that T, Q, CLW, Rain and Ice Retrievals are physically consistent, <u>on average</u>.

Correlation Matrix for Params: TEMP/WVAP/CLW/BAIN/GRPL/TSKIN/SFCP/ 501.0 401.0 301.0 Parameters Index 201.0 101.0 1.D 101.0 201.0 301.0 401.0 501.0 Parameters Index

No cloud resolving model is used in the forward operator

Makes the covariance matrix very important

Results of MIRS (Convergence)

Results of MIRS (Hydrometeors retrieval -GWP) Absorption Only Absorption Exercised Called The Comparison of the Comparis

MIRS-retrieved RWP

No convergence was reached before

Comparison at MHS Resolution

).05

High spatial correlation MSPPS / MIRS

Coastal transition smooth

Rain Water Path (RWP)

MIRS RWP @ MHS Resolution

0.04 0.13 0.22 0.32 0.41

0.5

Potential Benefits to NWP Assimilation

Detecting Cloud/Precip/Ice

Ice and Rain could be retrieved at the same time or one without the other, depending on the signal in the radiances and the Jacobians from CRTM.

Providing NWP with QC

Convergence Metric: $\varphi^{2} = \left[\left(Y^{m} - Y(X) \right)^{T} \times E^{-1} \times \left(Y^{m} - Y(X) \right) \right]$

Non-convergence is a powerful QC tool for NWP assimilation.

It could signal a contamination, a surface mixture that is hard to model or anything that might be inconsistent with the forward operator

Detecting Surface Type

- Thanks to retrieved Emissivity spectrum:
 - Sea Ice detected over water
 - Snow detected over land

Provide an Estimate of the State Vector, Including in Precip Conditions

Expanded (Global) Coverage

NoData OC fail

Most parameters are retrieved globally (over land/ocean/sea ice/desert/snow/coast/etc)

0.45 0.50 0.56 0.61 0.67 0.72 0.78 0.83 0.89 0.94 1.00

Conclusions

- No difference between a variational <u>Retrieval</u> and 1DVAR radiance assimilation
- Algorithm estimates sounding, cloud, precipitation and surface parameters in non-traditional areas (could be used as 1st Guess to NWP assimilation models)
- MIRS also offers powerful QC indicators for NWP assimilation
- MIRS could be considered a rapid pre-processing tool that could help the full 3D or 4D VAR NWP assimilation
- MIRS is generic (for all MW sensors), so treatment of sensors data is consistent (used routinely for AMSU, MHS, SSMIS)
- MIRS is freely available to scientific community.