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Why Another Retrieval Algorithm??

• Excellent retrieval accuracy and yield
– Comparable to state-of-the-art methods (results presented today)
– Especially accurate in areas of heavy clouds and over land where

modeling is difficult
– Highly-accurate “first-guess” could help initialize physical / 1DVAR 

algorithms and/or backfill when these algorithms don’t converge
• Error/cloud characterization:

– Averaging kernels and full error-covariance matrix
– Quality control variables
– Cloud parameters

• SPEED!!
– Approximately 1000 retrievals per second using IASI (all channels) 

and AMSU with desktop PC
– Very appealing for data assimilation and direct broadcast applications

The SCC/NN retrieval algorithm I’ll discuss today should 
complement current physical / 1DVAR algorithms AND 

data assimilation routines by offering the following advantages:
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Outline

• Brief algorithm overview
– Stochastic cloud clearing (SCC)
– Projected Principal Components compression
– Multilayer feedforward neural networks (NN)

• SCC performance with Quality Control (QC)

• SCC+NN performance comparisons with AIRS L2 Version 5 
algorithm

• Infrared Atmospheric Sounding Interferometer (IASI) 
Information Content Analysis

• IASI versus AIRS:  SCC/NN temperature retrieval performance

• Future Work / Summary
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Algorithm Block Diagram
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Stochastic Cloud Clearing

• SCC estimates cloud contamination solely based on statistics.
- Hyperspectral IR and microwave observations are collocated 
to ground truth (ECMWF, radiosondes, etc.)

• Key concept: Principal component analyses of ΔR, not R.
- Principal components of cloudy radiances can distribute cloud 
signal to non-cloud-impacted channels, etc.
- Also mitigates crosstalk from surface emissivity variability

• Nonlinearity is accommodated using stratification (sea/land, 
latitude, day/night), multiplicative scan angle correction, etc.

• Advantages
-Simple: SCC does not need physical models (retrieval or radiative
transfer).
-Fast: Based on matrix addition and multiplication
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Block Diagram of SCC Algorithm
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C. Cho and D. H. Staelin, “Cloud clearing of AIRS Hyperspectral Infrared Radiances Using Stochastic Methods,”
J. Geophys. Res., 111, D09S18, doi:10.1029/2005JD006013, 2006.
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Stochastic Cloud Clearing with AIRS/AMSU: 
Comparisons with Sea Surface Temperature

• Angle-corrected TB images at window channels

• Clearing works well even if there is no hole (clear FOV)
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Projected PCT (Canonical Correlations)

•An orthonormal basis for this r-dimensional subspace of the original m-dimensional 
radiance vector space      is given by the r most-significant right eigenvectors,       , of 
the reduced-rank linear regression matrix,      .

• It is sometimes useful to remove the PCA constraint of uncorrelated components:

are the r most significant eigenvectors of

•The Wiener-filtered radiances are projected onto the r-dimensional subspace 
spanned by      .  It is this projection that motivates the name “projected principal 
components.”
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• Another useful application of the PPC transform is the compression of 
spectral radiance information that is correlated with a geophysical parameter, 
such as the temperature profile. 

Projected PCT (Canonical Correlations)

• The r-rank linear operator that captures the most radiance information
which is correlated to the temperature profile is

are the r most significant eigenvectors of
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Performance Comparison of 
Principal Components Transforms

“Radiance
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W. J. Blackwell, “A Neural-Network Technique for the Retrieval of Atmospheric Temperature and Moisture Profiles
from High Spectral Resolution Sounding Data,” IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 11, Nov. 2005.
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Multilayer Feedforward Neural Networks

• Parameterized, nonlinear function

• Parameters (“weights” and 
“biases”) are found by numerically 
minimizing some cost function 
(usually SSE)

• Sophisticated methods for finding 
optimal weights exist (“back-
propagation” of errors)



MIT Lincoln Laboratory
ITSC-16 : 12

WJB 6/25/2008 WJB@LL.MIT.EDU

Perceptron
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Retrieval Performance Validation with 
AIRS/AMSU

• >1,000,000 co-located AIRS/AMSU/ECMWF observations 
from ~100 days:  

– Every fourth day from December 1, 2004 through January 31, 
2006

– Used for training

• ~250,000 profiles set aside for validation and testing sets

• ~50,000 quality-controlled radiosondes from NOAA FSL 
global database co-located with AIRS/AMSU observations

– Used for validation

Global: Cloudy, Land & Ocean, Day & Night

Case 2: Radiosonde data

Case 1: ECMWF atmospheric fields
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Descending, Land, Edge-of-Scan, Spring05
Cloudy Conditions, 910 Global Radiosondes

Latitudes within ±60°
~1km vertical layers

AIRS+AMSU 910 radiosondes are “truth”

Version 5

Excellent SCC/NN 
performance in
lower troposphere !
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T(h) RMS Error Versus Cloud Fraction 
Common Ensemble

Land, All latitudes, Radiosondes

SCC/NN is much
less sensitive to 
cloud amount !
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Typical NN Retrieval Error Covariance

RMS Error
RMS Error
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Typical NN Retrieval Averaging Kernels

Very high vertical 
resolution in
lower troposphere !
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IASI Temperature Retrievals Over Ocean

Near-nadir scan angles, ±60° Latitude
~1km vertical layers

IASI+AMSU ECMWF is “truth”

NN temperature
retrieval is vastly
superior to linear
regression !
(Effect is even more 
pronounced over land.)
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AIRS versus IASI: Ocean, Night

Near-nadir scan angles, ±60° Latitude
~1km vertical layers

IASI+AMSU ECMWF is “truth”
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Future Work

• Additional and more extensive performance assessments

– Match-ups with radiosonde data

– Integration with latest AIRS Level 2 algorithm (V6)

• Algorithm optimizations, especially for IASI and CrIMSS

– Improved handling of land, including elevated surface terrain and 
surface emissivity

– Retrieval extensions to include ozone, trace gases, and cloud 
microphysical properties

• Experiments with data assimilation and direct broadcast 
applications

– We’re looking for collaborators – please contact me if interested
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Summary and Conclusions

• SCC/NN RMS retrieval accuracies and yield substantially exceed 
those of the AIRS L2 algorithm (V5) in cloudy conditions over 
land.  Moisture retrievals show similar characteristics.

• SCC/NN algorithm is characterized by full error covariance 
matrix, quality control, and averaging kernels, facilitating its use 
with other retrieval and assimilation methodologies.

• High computational efficiency (1000 retrievals/sec) makes 
SCC/NN particularly attractive for near-real-time data assimilation 
and direct broadcast applications.

• Thanks to NPOESS IPO and NASA NPP/AIRS Science Teams for 
financial and logistical support for this work.
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Philosophical Musings

• Physical / 1DVAR retrievals are only as good as the models

• Empirical statistical retrievals (i.e., using real observations, not 
simulated observations) are only as good as the ground truth

• Cloud and surface emissivity models, while progressing 
rapidly, are still inadequate to provide retrievals with highest
possible fidelity in “problem areas” (Cloudy/Land)  

• Sophisticated statistical/stochastic methods can be very 
helpful here:

– Cloud/SE modeling error greatly exceeds profile ground truth 
error

– There is hope:  INFORMATION CONTENT IS IN THE RADIANCES

• My contention (to be supported by evidence in today’s talk):  
Presently, the best statistical retrievals, which are essentially 
4-D interpolators of the ground truth, exceed the accuracies of 
the best physical retrievals IN CLOUDS OVER LAND
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Stochastic Cloud Clearing
Quality Control

Ocean, All latitudes
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Algorithm Overview (Part I)

• Temperature and moisture profile retrievals are produced in all cloud conditions

• Cloud-cleared radiance estimates are produced for all 2378 AIRS channels

• Retrieval is global:
– All latitudes
– Ocean and land 
– Day and night

• Quality control has been implemented

• IR-only option implemented

• Very fast: Cloud-cleared radiances and retrieved profiles generated for one field
of regard in ~1 msec using PC!!

– Two-three orders of magnitude faster than current operational methods
– One-two orders of magnitude faster than iterative, pseudochannel methods
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Algorithm Overview (Part II)

• Algorithm is composed of linear and non-linear statistical 
operators

– Projected principal components transform
– Neural network estimation

• Coefficients are derived empirically, off-line:
– Co-location of sensor measurements with “truth” (Radiosondes, 

NWP, etc.)
– Model-generated data
– Data stratification is used for:

 Sensor scan angle
 Latitude
 Solar zenith angle
 Surface type
 Surface elevation
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Principal Components Transform (PCT)

• Objectives:
- Remove noise from spectral radiance observations (exploit redundancy)
- Compress radiance information into fewer components

• Cost function:  Minimize sum-squared error between estimated noise-free 
radiances and actual noise-free radiances

• Noise-Adjusted Principal Components (NAPC) transform:

• Where          are the r most significant eigenvectors of the whitened covariance 
matrix:
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SCC/NN versus AIRS L2 (Version 5)
Descending, Ocean, Edge-of-Scan, Spring

Latitudes within ±60°
~1km vertical layers

AIRS+AMSU ECMWF is “truth”
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SCC/NN versus AIRS L2 (Version 5)
Descending, Land, Edge-of-Scan, Spring

Latitudes within ±60°
~1km vertical layers

AIRS+AMSU ECMWF is “truth”
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SCC/NN versus AIRS L2 (Version 5)
Descending, South Pole*, Edge-of-Scan, Spring

*South Pole = Latitudes < -60°

~1km vertical layers
AIRS+AMSU

ECMWF is “truth”
Quality is suspect
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IASI/ECMWF/SARTA Matchup Database

• Global database spanning May07-Dec07

• Approximately 100,000 fields-of-regard
– IASI observations (2x2)
– ECMWF atmospheric fields
– Radiosondes (available for some FOR’s)
– IASI clear-air spectra calculated with SARTA v1.05 

• Database stratified by surface type, latitude, solar zenith 
angle, sensor scan angle, surface pressure 
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RMS IASI Cloudy Obs - Clear Calcs
(i.e., Before Cloud Clearing)
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Correlation of “IASI OBS” and
“IASI OBS-CALCS” Eigenvectors

Eigenvectors almost identical
Indicates channels responsive to clouds

Correlation decreases 
as atmospheric signal 
is removed

Ocean
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IASI Eigenanalysis

Predominantly cloud effects

Atmospheric and
sensor “noise”

Ocean
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IASI “OBS” and “OBS-CALCS”
Eigenvectors
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Stochastic Cloud Clearing of IASI

473 IASI channels were cleared
Descending orbits within ±60° latitude, ocean ECMWF is “truth”
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Stochastic Cloud Clearing of IASI

473 IASI channels were cleared
Descending orbits within ±60° latitude, land ECMWF is “truth”
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IASI Temperature Retrievals Over Land

Near-nadir scan angles, ±60° Latitude
~1km vertical layers

IASI+AMSU ECMWF is “truth”
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AIRS versus IASI: Land

Near-nadir scan angles, ±60° Latitude

AIRS is significantly better
near the surface

~1km vertical layers
IASI+AMSU ECMWF is “truth”
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AIRS versus IASI NEdT
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AIRS Retrieval Degradation After Adding
Noise to Shortwave Channels

Near-nadir scan angles, ±60° Latitude
~1km vertical layers

IASI+AMSU ECMWF is “truth”
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