

Neural Network Estimation of Atmospheric Profiles Using AIRS/IASI/AMSU Data in the Presence of Clouds

William J. Blackwell and Michael Pieper

ITSC-16

May 12, 2008

This work was sponsored by the National Oceanic and Atmospheric Administration under contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

ITSC-16 : 1 WJB 6/25/2008

The SCC/NN retrieval algorithm I'll discuss today should complement current physical / 1DVAR algorithms AND data assimilation routines by offering the following advantages:

- Excellent retrieval accuracy and yield
 - Comparable to state-of-the-art methods (results presented today)
 - Especially accurate in areas of heavy clouds and over land where modeling is difficult
 - Highly-accurate "first-guess" could help initialize physical / 1DVAR algorithms and/or backfill when these algorithms don't converge
- Error/cloud characterization:
 - Averaging kernels and full error-covariance matrix
 - Quality control variables
 - Cloud parameters
- SPEED!!
 - Approximately 1000 retrievals per second using IASI (all channels) and AMSU with desktop PC
 - Very appealing for data assimilation and direct broadcast applications

- Brief algorithm overview
 - Stochastic cloud clearing (SCC)
 - Projected Principal Components compression
 - Multilayer feedforward neural networks (NN)
- SCC performance with Quality Control (QC)
- SCC+NN performance comparisons with AIRS L2 Version 5 algorithm
- Infrared Atmospheric Sounding Interferometer (IASI) Information Content Analysis
- IASI versus AIRS: SCC/NN temperature retrieval performance
- Future Work / Summary

Algorithm Block Diagram

WJB@LL.MIT.EDU

MIT Lincoln Laboratory

- SCC estimates cloud contamination solely based on statistics.
 Hyperspectral IR and microwave observations are collocated to ground truth (ECMWF, radiosondes, etc.)
- Key concept: Principal component analyses of ΔR , not R.
 - Principal components of cloudy radiances can distribute cloud signal to non-cloud-impacted channels, etc.
 - Also mitigates crosstalk from surface emissivity variability
- Nonlinearity is accommodated using stratification (sea/land, latitude, day/night), multiplicative scan angle correction, etc.

Advantages

-Simple: SCC does not need physical models (retrieval or radiative transfer).

-Fast: Based on matrix addition and multiplication

Block Diagram of SCC Algorithm

C. Cho and D. H. Staelin, "Cloud clearing of AIRS Hyperspectral Infrared Radiances Using Stochastic Methods," J. Geophys. Res., 111, D09S18, doi:10.1029/2005JD006013, 2006.

WJB@LL.MIT.EDU

MIT Lincoln Laboratory

ITSC-16 : 6 WJB 6/25/2008

Stochastic Cloud Clearing with AIRS/AMSU: Comparisons with Sea Surface Temperature

• Angle-corrected TB images at window channels

AIRS 2390.1cm⁻¹: near Hawaii AIRS 2399.9cm⁻¹: near SW Indian Ocean

• Clearing works well even if there is no hole (clear FOV)

Projected PCT (Canonical Correlations)

$$c(\cdot) = E[(\widehat{R}_r - R)^T (\widehat{R}_r - R)]$$

• It is sometimes useful to remove the PCA constraint of uncorrelated components:

$$\widehat{R}_r \stackrel{\triangle}{=} \mathbf{L}_r \widetilde{R}$$
$$\mathbf{L}_r = \mathbf{E}_r \mathbf{E}_r^T \mathbf{C}_{RR} (\mathbf{C}_{RR} + \mathbf{C}_{\Psi\Psi})^{-1}$$
$$\mathbf{E}_r = [E_1 \mid E_2 \mid \cdots \mid E_r]$$

are the r most significant eigenvectors of

$$\mathbf{C}_{RR}(\mathbf{C}_{RR}+\mathbf{C}_{\Psi\Psi})^{-1}\mathbf{C}_{RR}$$

•The Wiener-filtered radiances are projected onto the r-dimensional subspace spanned by \mathbf{E}_r . It is this projection that motivates the name "projected principal components."

•An orthonormal basis for this r-dimensional subspace of the original m-dimensional radiance vector space \mathcal{R} is given by the r most-significant right eigenvectors, \mathbf{V}_r , of the reduced-rank linear regression matrix, \mathbf{L}_r .

$$\widetilde{P} = \mathbf{V}_r^T \widetilde{R}$$

MIT Lincoln Laboratory

• Another useful application of the PPC transform is the compression of spectral radiance information that is correlated with a geophysical parameter, such as the temperature profile.

• The r-rank linear operator that captures the most radiance information which is correlated to the temperature profile is

$$\mathbf{L}_r = \mathbf{E}_r \mathbf{E}_r^T \mathbf{C}_{TR} (\mathbf{C}_{RR} + \mathbf{C}_{\Psi\Psi})^{-1}$$

$$\mathbf{E}_r = [E_1 \mid E_2 \mid \cdots \mid E_r]$$

are the r most significant eigenvectors of

$$\mathbf{C}_{TR}(\mathbf{C}_{RR}+\mathbf{C}_{\Psi\Psi})^{-1}\mathbf{C}_{RT}$$

MIT Lincoln Laboratory

Performance Comparison of Principal Components Transforms

W. J. Blackwell, "A Neural-Network Technique for the Retrieval of Atmospheric Temperature and Moisture Profiles from High Spectral Resolution Sounding Data," *IEEE Trans. Geosci. Remote Sensing,* vol. 43, no. 11, Nov. 2005.

WJB@LL.MIT.EDU

MIT Lincoln Laboratory

• Parameterized, nonlinear function

• Parameters ("weights" and "biases") are found by numerically minimizing some cost function (usually SSE)

 Sophisticated methods for finding optimal weights exist ("backpropagation" of errors)

Perceptron

Retrieval Performance Validation with AIRS/AMSU

Case 1: ECMWF atmospheric fields

- >1,000,000 co-located AIRS/AMSU/ECMWF observations from ~100 days:
 - Every fourth day from December 1, 2004 through January 31, 2006
 - Used for training
- ~250,000 profiles set aside for validation and testing sets

Case 2: Radiosonde data

- ~50,000 quality-controlled radiosondes from NOAA FSL global database co-located with AIRS/AMSU observations
 - Used for validation

Global: Cloudy, Land & Ocean, Day & Night

Descending, Land, Edge-of-Scan, Spring05 **Cloudy Conditions, 910 Global Radiosondes**

ITSC-16:14 WJB 6/25/2008

T(h) RMS Error Versus Cloud Fraction Common Ensemble

ITSC-16 : 15 WJB 6/25/2008

WJB@LL.MIT.EDU

MIT Lincoln Laboratory

Typical NN Retrieval Error Covariance

Typical NN Retrieval Averaging Kernels

WJB@LL.MIT.EDU

MIT Lincoln Laboratory

IASI Temperature Retrievals Over Ocean

AIRS versus IASI: Ocean, Night

- Additional and more extensive performance assessments
 - Match-ups with radiosonde data
 - Integration with latest AIRS Level 2 algorithm (V6)
- Algorithm optimizations, especially for IASI and CrIMSS
 - Improved handling of land, including elevated surface terrain and surface emissivity
 - Retrieval extensions to include ozone, trace gases, and cloud microphysical properties
- Experiments with data assimilation and direct broadcast applications
 - We're looking for collaborators please contact me if interested

- SCC/NN RMS retrieval accuracies and yield substantially exceed those of the AIRS L2 algorithm (V5) in cloudy conditions over land. Moisture retrievals show similar characteristics.
- SCC/NN algorithm is characterized by full error covariance matrix, quality control, and averaging kernels, facilitating its use with other retrieval and assimilation methodologies.
- High computational efficiency (1000 retrievals/sec) makes SCC/NN particularly attractive for near-real-time data assimilation and direct broadcast applications.
- Thanks to NPOESS IPO and NASA NPP/AIRS Science Teams for financial and logistical support for this work.

Backup Slides

MIT Lincoln Laboratory

ITSC-16 : 22 WJB 6/25/2008

- Physical / 1DVAR retrievals are only as good as the models
- Empirical statistical retrievals (i.e., using real observations, not simulated observations) are only as good as the ground truth
- Cloud and surface emissivity models, while progressing rapidly, are still inadequate to provide retrievals with highest possible fidelity in "problem areas" (Cloudy/Land)
- Sophisticated statistical/stochastic methods can be very helpful here:
 - Cloud/SE modeling error greatly exceeds profile ground truth error
 - There is hope: INFORMATION CONTENT IS IN THE RADIANCES
- My contention (to be supported by evidence in today's talk): Presently, the best statistical retrievals, which are essentially 4-D interpolators of the ground truth, exceed the accuracies of the best physical retrievals IN CLOUDS OVER LAND

Stochastic Cloud Clearing Quality Control

ITSC-16 : 24 WJB 6/25/2008 WJB@LL.MIT.EDU

MIT Lincoln Laboratory

- Temperature and moisture profile retrievals are produced in all cloud conditions
- Cloud-cleared radiance estimates are produced for all 2378 AIRS channels
- Retrieval is global:
 - All latitudes
 - Ocean and land
 - Day and night
- Quality control has been implemented
- IR-only option implemented
- Very fast: Cloud-cleared radiances and retrieved profiles generated for one field of regard in ~1 msec using PC!!
 - Two-three orders of magnitude faster than current operational methods
 - One-two orders of magnitude faster than iterative, pseudochannel methods

WJB@IJI.MTT.EDU

- Algorithm is composed of linear and non-linear statistical operators
 - Projected principal components transform
 - Neural network estimation
- Coefficients are derived empirically, off-line:
 - Co-location of sensor measurements with "truth" (Radiosondes, NWP, etc.)

- Model-generated data
- Data stratification is used for:
 - Sensor scan angle
 - Latitude
 - Solar zenith angle
 - Surface type
 - Surface elevation

- Objectives:
 - Remove noise from spectral radiance observations (exploit redundancy)
 - Compress radiance information into fewer components

$$\widehat{R}_r \stackrel{\triangle}{=} \mathbf{G}_r \widetilde{R} \qquad \qquad \mathbf{C}_{\widetilde{R}\widetilde{R}} = \mathbf{C}_{RR} + \mathbf{C}_{\Psi\Psi}$$

• Cost function: Minimize sum-squared error between estimated noise-free radiances and actual noise-free radiances

$$c(\cdot) = E[(\widehat{R}_r - R)^T (\widehat{R}_r - R)]$$

• Noise-Adjusted Principal Components (NAPC) transform:

$$\mathbf{G}_r = \mathbf{C}_{\Psi\Psi}^{1/2} \mathbf{W}_r \mathbf{W}_r^T \mathbf{C}_{\Psi\Psi}^{-1/2}$$

• Where \mathbf{W}_r^T are the r most significant eigenvectors of the whitened covariance matrix:

$$\mathbf{C}_{\widetilde{W}\widetilde{W}} = \mathbf{C}_{\Psi\Psi}^{-1/2}(\mathbf{C}_{\widetilde{R}\widetilde{R}})\mathbf{C}_{\Psi\Psi}^{-1/2}$$

MIT Lincoln Laboratory

SCC/NN versus AIRS L2 (Version 5) Descending, Ocean, Edge-of-Scan, Spring

ITSC-16 : 28 WJB 6/25/2008

SCC/NN versus AIRS L2 (Version 5) Descending, Land, Edge-of-Scan, Spring

ITSC-16:29 WJB 6/25/2008

SCC/NN versus AIRS L2 (Version 5) Descending, South Pole^{*}, Edge-of-Scan, Spring

ITSC-16 : 30 WJB 6/25/2008

WISBUR POL MLATTURED U60°

- Global database spanning May07-Dec07
- Approximately 100,000 fields-of-regard
 - IASI observations (2x2)
 - ECMWF atmospheric fields
 - Radiosondes (available for some FOR's)
 - IASI clear-air spectra calculated with SARTA v1.05
- Database stratified by surface type, latitude, solar zenith angle, sensor scan angle, surface pressure

RMS IASI Cloudy Obs - Clear Calcs (i.e., Before Cloud Clearing)

Correlation of "IASI OBS" and "IASI OBS-CALCS" Eigenvectors

IASI Eigenanalysis

IASI "OBS" and "OBS-CALCS" Eigenvectors

MIT Lincoln Laboratory

Stochastic Cloud Clearing of IASI

ITSC-16 : 36 WJB 6/25/2008 WJB@LL.MIT.EDU

ECMWF is "truth" MIT Lincoln Laboratory

Stochastic Cloud Clearing of IASI

473 IASI channels were cleared Descending orbits within ±60° latitude, land

ITSC-16 : 37 WJB 6/25/2008 WJB@LL.MIT.EDU

ECMWF is "truth" MIT Lincoln Laboratory

IASI Temperature Retrievals Over Land

AIRS versus IASI: Land

WJB@LL.MIT.EDU

MIT Lincoln Laboratory

AIRS Retrieval Degradation After Adding Noise to Shortwave Channels

