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F16 SSMIS Key Characteristics
• 24 Channels (19-183 GHz)
• Conical Scan Geometry (45°)
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Scan position dependent bias
• Calibration Anomaly: solar 

intrusion and antenna emission

UAS

(Kunkee et al. 2008) 
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No.1: Accurate calibration anomaly 
and scan-dependent bias 
corrections for F16 SSMIS data 
since forecast model uses a 
unbiased data
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F16 SSMIS Calibration Anomaly Correction

• NRL/UK MetOffice SSMIS Unified Pre-Processor (UPP)
– Correct antenna emission for LAS
– Removal of warm load anomaly
– Doppler shift correction for UAS  
– Spatial averaging to reduce to the sub-Kelvin levels

• NESDIS SSMIS Pre-processor
– Correct antenna emission for LAS
– Removal of warm load anomaly
– UAS bias removal using SABER (Sounding of the Atmosphere 

using Broadband Emission Radiometry ) measurements 
simulated as truth 

– Spatial filter for noise reduction  
– Linear mapping of SSMIS imager to its predecessor (SSM/I) using 

the F15 and F16 Simultaneous Conical Overpass observations
– Inter-sensor calibration for SSMIS imager non-linearity (for 

climate reprocessing)



Microwave Sensors Bias Correction in the 
NCEP GDAS

• Angle dependent (Cross-track sensors)
• Scan beam position dependent (Conic scanning 

sensors)
• Simple non-linear equation to predict bias

– Control vector augmented by Coefficients (additional 
analysis variables)

– Predictors scaled so that same background error 
variance used for each coefficient

– Major predictors
• Scan angle or scan position
• Lapse rate (Γ)
• Lapse rate squared (Γ2)
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(Derber and Wu)

Presenter
Presentation Notes
(An important factor is CLW. Currently, this parameter is not calculated from various microwave sensors over land and sea ice surfaces)




CH.   ΔTB (wobc)  ΔTB (wbc) σ

 

(wobc)   σ

 

(wbc)
1 0.74          0.82           3.29         3.17
2           0.26          0.12          0.98          0.99
3           0.02          0.01          0.35          0.35
4           0.38          0.00          0.25          0.25
5           0.21          0.01          0.30          0.28
6           0.57          0.04          0.45          0.36
7           1.71          0.12          0.48          0.41
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Regionally dependent bias after bias correction

TB (Observation) – TB (Simulation) Differences (DTB) 
for F16 UPP at LAS Channels (WBC)



UPP DTB Distributions at LAS Channels (WOBC)
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There remain
some regional 
biases after 
calibration anomaly 
correction in SSMIS
UPP data.

CH.5

CH.1
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No.2: A reliable cloud detection for 
UPP data quality control
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Cloud Detection Algorithms

• Cloud liquid water (CLW) algorithm over oceans: the 
SSMIS CLW algorithm follows the SSM/I CLW heritage 
algorithm developed by Weng and Grody (1994), where 
SSMIS TBs are remapped to SSM/I TB using the 
remapping coefficients developed by Yan and Weng 
(2008).

• Cloud detection over land: a newly developed empirical 
algorithm is used.

• Ice cloud detection: the SSMIS IWP algorithm is developed 
by Sun and Weng (2008, TGRS) based on the AMSU IWP 
heritage algorithm developed by Zhao and Weng (2002, 
JAM).



Impacts of Reliable Cloud Detection Quality Control 
on SSMIS Data Assimilation

Correct 
cloud
detection

Wrong cloud 
detection



No. 3: Reliable surface emissivity 
information for accurate SSMIS 
brightness temperature simulations
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Atmospheric Transmittance at Four Sounding Channels
(a) Atmospheric Transmittance at 52.8 GHz (b) Atmospheric Transmittance at 183±7 GHz

(c) Atmospheric Transmittance at 183±3 GHz (d) Atmospheric Transmittance at 183±1 GHz
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The atmospheric transmittance is up to around 0.9 at 52.8 oxygen and 183 water vapor sound channels, over some of polar regions. This causes these sounding channels act like window channels, i.e., become sensitive to surface.  

In this case, a small error in surface emissivity may incur a larger error in simulating brightness temperatures (move to next page)



Microwave Surface Emissivity Models in JCSDA 
Community Radiative Transfer Model

Five Surface Types 

A microwave land emissivity model (LandEM)
was developed by F. Weng, B. Yan, N. Grody 
(JGR, 2001)

Ocean                                 Sea Ice                Snow                 Canopy (bare soil)         Desert

Empirical snow and sea ice emissivity algorithm using 
microwave satellite window channels of measurements 
(B. Yan and F. Weng, 2003; 2008)

A fast microwave ocean emissivity model 
(English, S.J., and T.J. Hewison, 1998) 
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A few years ago, we developed a land emissivity model. This land emissivity model is now fully operational in EMC data assimilation system. As part of the model, snow emissivity is also simulated. 
However, with this land mode and other sea ice emissivity model, in polar regions and at high latitudes, we found simulated snow/sea ice emissivity is much less accurate so that almost no window and sounding channels of data are used in operational GDAS.  How?






Impact of Improved Snow and Sea Ice Emissivity at 
SSMIS Channels on F16 UPP SSMIS Data Usage

New
SNOW
EM

New
Ice 
EM

Old EM

More data is assimilated
Into GFS !



Due to improved snow and 
sea ice emissivity, a 
positive impact is seen.



No.4: Assimilation impact of water 
vapor sounding channels on 
forecast model
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A positive impact of SSMIS
UPP data at water vapor 
sounding channels is detected 
on GFS.

(July 1 ~ July 10, 2007)



Summary
•

 
Positive impacts of SSMIS UPP data can be obtained 
through improved cloud detection, surface snow and 
sea ice emissivity simulations

•
 

A positive impact of SSMIS UPP data is anticipated by 
adding water vapor channels

•
 

The SSMIS UPP data displays some regional 
dependent biases at several sounding channels which 
would reduce their assimilation impact  



Future Work

• Continue to investigate assimilation impacts of 
the SSMIS UPP data at water vapor sounding 
channels over oceans on GFS analysis fields.

• Investigate assimilation impact of the SSMIS 
UPP data at LAS and water vapor sounding 
channels over land, snow and sea ice conditions 
on GFS.

• Investigate the assimilation impact of SSMIS 
UPP data for the improved bias correction and 
quality control schemes on GFS
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