

Application of FY3 in Data Assimilation

Ma Gang Li Xiaoqing Qi chengli Zhang Fengying

Institute of NSMC, CMA

5th, May, 2008

IRAS(InfRared Atmosphere sounder)

MWTS(MicroWwave Temperature Sounder)

AIRS

MWHS(MicroWave Humidity Sounder)

- Introduce FY3 data into assimilation is one of the most important in the development of NWP in CMA
- Sounding data of satellite are the primary data in NWP data assimilation now
- Application radiance data from satellite in NWP data assimilation depend on a linear fast forward model

- Question:
- Impact of matching data from NWP model grid to satellite pixel?
- Bias generate from defination of predictor in fast radiative transfer model?

Analysis to predictors in fast forward model

Radiative transfer equation

$$\begin{aligned} R_{\nu} &\cong \varepsilon_{\nu} B_{\nu}(\Theta_{s}) T_{s,\nu} + \int_{p_{s}}^{0} B_{\nu}(\Theta(p)) \frac{\partial T_{\nu}(p,\theta_{u})}{\partial p} dp \\ &+ (1 - \varepsilon_{\nu}) T_{s,\nu} \int_{0}^{p_{s}} B_{\nu}(\Theta(p)) \frac{\partial T_{\nu}^{*}(p,\theta_{d})}{\partial p} dp + \rho_{\nu} T_{s,\nu} T_{\nu}(p_{s},\theta_{sun}) F_{0,\nu} \cos \theta_{sun} \end{aligned}$$

- Radiance from surface
- Upwelling radiance from atmosphere
- Downwelling radiance reflected by surface
- Short-wave radiance from sun

Main input for the fast forward model

Position in vector/element	Profile Array Contents	Units
1 to NLEV/1	Temperature profile	Deg/K
1 to NLEV/2	Water vapour profile	Kg/Kg
1 to NLEV/3	Ozone profile	Kg/Kg
1 to NLEV/4	Liqud water concentration profile(not used)	
Position in vector	Surface Array Contents	Units
1	Surface 2m temperature	Deg/K
2	Surface 2m water vapour	Kg/Kg
3	Surface pressure	hPa
	2m vector wind speed u	$m.s^{\cdot 1}$
5	2m vector wind speed v	$\mathbf{m}.\mathbf{s}^{\cdot 1}$
Position in vector	Surface Skin Array Contents	Units
1	Radiative skin temperature	Deg/K
Position in vector	Cloud Array Contents	Units
1	Cloud top pressure	hPa
2	Cloud fractional cover	0-1
Position in vector	Surface Emissivity Array Contents	Units
1 to NCHAN	Surface emissivity	

Predicted channel optical depth for each layer

 \mathcal{T} : :

• Impact from mixed gas, water vapor and O3 are taken into considered while Channel transmittance is computed

• The predictor a_{i,j,k} are regressed from a LBL transmittance database which is generated from TIGR43 and GENLN2

$$d_{i,j} = d_{i,j-1} + \sum_{k=1}^{K} a_{i,j,k} X_{k,j}$$

$$X_{j,k} = X_{j,k} - X_{j,k}^{ref}$$

(c)Defination of predictors are same to RTTO

rredictor	Fixed gases	water vapour	Ozone
X ,,1	$sec(\theta)$	$sec^2(\theta)W_r^2(j)$	$sec(\theta) O_r(j)$
X j,2	$sec^{2}(\theta)$	$(sec(\theta)W_w(j))^2$	$sec(\theta) O_r(j)$
X j,3	$sec(\theta) T_r(j)$	$(sec(\theta)W_w(j))^4$	$sec(\theta) O_r(j) \delta T(j)$
X	$sec(\theta) T_r^2(j)$	$sec(\theta) W_r(j) \delta T(j)$	$(sec(\theta) O_r(j))^2$
X	$T_r(j)$	$sec(\theta)W_r(j)$	$\sqrt{\sec(\theta) O_r(j)} \delta T(j)$
X	$T_r^2(j)$	$4 \sqrt{\sec(\theta) W_r(j)}$	$sec(\theta) O_r(j)^2 O_w(j)$
X	$sec(\theta) T_w(j)$	$sec(\theta) W_r(j)$	$\frac{O_r(j)}{O_w(j)} \sqrt{\sec(\theta) O_r(j)}$
X	$sec(\theta) \frac{T_w(j)}{T_r(j)}$	$(sec(\theta)W_r(j))^3$	$sec(\theta) O_r(j) O_w(j)$
X	$\sqrt{sec(\theta)}$	$(sec(\theta) W_r(j))^4$	$O_r(j) \operatorname{sec}(\theta) \sqrt{(O_w(j))}$
X j,10	$\sqrt{\sec(\theta)} {}^4 \sqrt{T_w(j)}$	$sec(\theta) W_r(j) \delta T(j) \delta T(j) $	$sec(\theta) O_w(j)$
X _{j,11}	0	$(\sqrt{\sec(\theta) W_r(j)}) \delta T(j)$	$(sec(\theta) O_w(j))^2$
X	0	$\frac{(sec(\theta)W_r(j))^2}{W_w}$	\mathbf{O} $T(i) = \int T^{\text{profile}}(i)$
X j,13	0	$\frac{\sqrt{(\sec(\theta) W_r(j)} W_r(j)}}{W_w(j)}$	$\mathbf{O} \qquad \qquad \mathbf{W}(j) = \begin{bmatrix} W^{\text{profile}}(j) \\ 0 \end{bmatrix}$
X j,14	0	$sec(\theta) \frac{W_r^2(j)}{T_r(j)}$	$O(j) = [O^{-j-1}(j)]$
X j,15	0	$sec(\theta) \frac{W_r^2(j)}{T_r^4(j)}$	$T_r(j) = I(j) / T_r(j)$ $O_r(j) = O(j) / O^*(j)$ $T_r(j) = \sum_{j=1}^{j} P(j)$
			$I_w(J) = \sum_{l=2}^{n} P(l)$

 $sec(\theta) O_r(j)$ $O_r(j)O_w(j)$ $ec(\theta) \cdot (O_w(j) sec(\theta))$ $O_w(j)$ $O_w(j))^2$ $T(j) = \int T^{\text{profile}}(j) + T^{\text{profile}}(j-1) \int / 2$ $W(j) = \left[W^{\text{profile}}(j) + W^{\text{profile}}(j-1) \right] / 2$ $O(j) = \left[O^{\text{profile}}(j) + O^{\text{profile}}(j-1)\right] / 2$ $T_r(j) = T(j) / T^*(j)$ $\delta T(j) = T(j) - T^*(j)$

 $O_{\mathbf{w}}(j) = \left\{\sum_{l=1}^{J} P(l) \left[P(l) - P(l-1) \right] O(l) \right\} / \left\{\sum_{l=1}^{J} P(l) \left[P(l) - P(l-1) \right] O^{*}(l) \right\}$

 $O_r(j) = O(j) / O^*(j)$

 $T^{*}(j) = \int T^{reference}(j) + T^{reference}(j-1) \int / 2$ $W^{*}(j) = \left[W^{\text{reference}}(j) + W^{\text{reference}}(j-1) \right] / 2$ $O^*(i) = \int O^{reference}(i) + O^{reference}(i-1) \int / 2$ $W_r(j) = W(j) / W^*(j)$ $T_{w}(j) = \sum_{l=2}^{j} P(l) [P(l) - P(l-1)] T_{r}(l-1)$ $W_{w}(j) = \left\{ \sum_{l=1}^{j} P(l) \left[P(l) - P(l-1) \right] W(l) \right\} / \left\{ \sum_{l=1}^{j} P(l) \left[P(l) - P(l-1) \right] W^{*}(l) \right\}$

Parameters of IRAS

							19 HTX 8/ N
Channel number	Central wavenumb er(cm ⁻¹)	Central wave lenth (µm)	Half power width (cm ⁻¹)	Main absorbers	Maximum observing temperature (K)	NE∆N (mW/m² -sr-cm⁻¹)	The most contribution layer (hPa)
1 2 3 4 5 6 7	669 680 690 703 716 733 749	14.95 14.71 14.49 14.22 13.97 13.84 13.35	3 10 12 16 16 16 16	$\begin{array}{c} \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2/\text{H}_2\text{O}\\ \text{CO}_2/\text{H}_2\text{O} \end{array}$	280 265 250 260 275 290 300	4.00 0.80 0.60 0.35 0.32 0.36 0.30	30 60 100 400 600 800 900
8	802	12.47	30	window	330	0.20	surface
9	900	11.11	35	window	330	0.15	surface
10	1030	9.71	25	O ₃	280	0.20	25
11	1345	7.43	50	H ₂ O	330	0.23	800
12 13	1365 1533	7.33 6.52	40 55	H ₂ O H ₂ O	285 275	0.30 0.30	700 500
14 15 16 17	2188 2210 2235 2245	4.57 4.52 4.47 4.45	23 23 23 23 23	N ₂ O N ₂ O CO ₂ /N ₂ O CO ₂ /N ₂ O	310 290 280 266	0.009* 0.004* 0.006* 0.006*	1000 950 700 400
18	2388	4.19	25	CO ₂	320	0.003*	atmosphere
19 20	2515 2660	3.98 3.76	35 100	window window	340 340	0.003* 0.002	surface surface
21	14500	0.69	1000	window	100%A	0.10%A	cloud
22	11299	0.885	385	window	100%A	0.10%A	surface
23	10638	0.94	550	H ₂ O	100%A	0.10%A	surface
24	10638	0.94	200	H ₂ O	100%A	0.10%A	surface
25	8065	1.24	650	H ₂ O	100%A	0.10%A	surface
26	6098	1.64	450	H ₂ O	100%A	0.10%A	surface

Analysis to the predicted optical depth for each predictor on

every layer(1) – for AIRS

Parameters for MWTS

1

	Chan nel numb er	Central frequency (GHz)	Main absorb ers	Band width (MHz)	ΝΕΔΤ (k)	Eddicenc y for antenna band(%)	Observing field (K)	Calibration precision ** (K)	
	1	50.30		180	0.5 [*]	90	3-340	1.2	
	2	53.596±0.115	02	2×170	0.4	90	3-340	1.2	
53	3	54.94	02	400	0.4	90	3-340	1.2	40
	4	57.290	O ₂	330	0.4	90	3-340	1.2	L

* The final target is 0.55K ** not include ΝΕΔΤ

Parameters for MWHS

	(GHz)		(MHz)	NΕΔΤ [*] (k)	Frequen cy stability (MHz)	Eddice ncy for antenn a band	Receiver mode	Obsewrv ing field(K)
1	150(V)		1000	0.9	50	≥95%**		3-340
2	150(H)		1000	0.9	50	≥95%**		3-340
3	183.31±1	H ₂ O	500	1.1	30	≥95%		3-340
4	183.31±3	H ₂ O	1000	0.9	30	≥95%		3-340
5	183.31±7	H ₂ O	2000	0.9	30	≥95%		3-340

Analysis to the predicted optical depth for each predictor on every layer(5) – for MWTS

Upper channel at O2 58GHz ch14 central frequency 57.29GHz

Pressure(hPa)

Precision to the fast forward model

FY2B/C

5401

Set up observations of FY3

Biases for the simulated brightness temperature from FY3 VASS (IRAS, MWTS and MWHS) to NOAA16 ATOVS

Assmilation/prediction test with the simulated FY3 observations for a typhoon case

Image for the 0713th typhoon'track

Parameters for ●乌兰巴托 grapes model 0713号台区 •哈尔河 • 长春 北京 Grids: 119*89*23 40°N resolution 0.5625°*0.5625° 30°N Assmilation window 0713 20°N 20070901606±3 hr ●关岛(美) prediction 66 10°N 合风 强热带 峯坡 新加坡 130° F 140° 150°

Main conclusion

- Predicted optical depth for mixed gas is consistent to channel's weighting function both for infrared and for microwave
- Predicted optical depth for water vapor only contributes in lower atmosphere
- By using a profiles database and infrared and microwave LBL model, fast coefficients for IRAS, MWTS and MWHS have been generated
- Validation to the fast coefficients of IRAS, MWTS and MWHS shows a good precision while brightness temperature sfor the instruments from LBL model are compared
- Validation indicates that brightness temperature of NOAA ATOVS are quite consistent to the values of FY3 VASS
- Assimilation of FY3 radiance in grapes model shows a weak impact to the prediction of typhoon's path

Plan in the future

- Set up a new LBL transmittances database with the nearest profiles database from ECMWF
- Analysis the contribution from predictors with other profile
- Introduce quality control and bias correction for assimilation of FY3 VASS radiance
- Further test to confirm the possible impact from assimilation of FY3 radiance

AIRS IASI HIRS CRIS

ię s

Atmospheric transmittance for microwave

predictor01

Analysis to the predicted optical depth for each predictor on every layer(4) – for AIRS

Analysis to the predicted optical depth for each predictor on

Analysis to the predicted optical depth for each predictor on

Analysis to the predicted optical depth for each predictor on every layer(12) – for MWTS

200

400 -

600

800

1000

Pressure(hPa)

Optical Depth

Optical Depth

Analysis to the predicted optical depth for each predictor on every layer(16) – for MWHS

200

400

600

800

1000

-0.5

[>]ressure(hPa)

Lower channel at H2O 183GHz ch5 central wavenumber 183.31±7GHz

Chann el numbe r	Central wavenum ber (cm ⁻¹)	Central wavelenth (µm)	Half power band width (cm ⁻¹)	NE∆N mW/(m²-sr-cm⁻¹)	
1	669	14.95	3	3.00	
2	680	14.71	10	0.67	
3	690	14.49	-12	0.50	
4	703	14.22	16	0.31	
5	716	13.97	16	0.21	
6	733	13.64	16	0.24	
7	749	13.35	16	0.20	
8	900	11.11	-35	0.10	
9	1030	9.71	25	0.15	
10	802	12.47	16	0.15	
11	1365	7.33	40	0.20	
12	1533	6.52	55	0.20	
13	2188	4.57	23	0.006	
14	2210	4.52	23	0.003	
15	2235	4.47	23	0.004	
16	2245	4.45	23	0.004	
17	2420	4.13	28	0.002	
18	2515	4.00	35	0.002	
19	2660	3.76	100	0.001	
20	14500	0.69	1000	0.10%albedo	

Spectral parameters: HIRS/3 s IRAS

Cha nnel num ber	Central wavenumb er (cm ⁻¹)	Central wavelenth (µm)	Half power band width (cm ⁻¹)	Main absorber s	The highest observing temperat ure (K)	NE∆N (mW/m ² -sr-cm ⁻¹)	The most contributio n layer (hPa)
1	669	14.95 🚽	3	CO,	280	4.00	30
2	680	14.71	10	CO	265	0.80	60
3	690	14.49	12	CO ₂	250	0.60	100
4	703	14.22	16	CO ₂	260	0.35	400
5	716	13.97	16	CO ₂	275	0.32	600
6	7 <u>3</u> 3	13.84	16	CO_2/H_2O	290	0.36	800
7	749	-13.35	16	CO ₂ /H ₂ O	300	0.30	900
8	802	12.47	30	window	330	0.20	surface
9	900	11.11	35	window	330	0.15	surface
10	1030	9.71	25	O ₃	280	0.20	25
11	1345	7.43	50	H ₂ O	330	0.23	800
12	1365	7.33	40	H ₂ O	285	0.30	700
13	1533	6.52	55	H ₂ O	275	0.30	500
14	2188	4.57	23	N.O	310	0.009	1000
15	2210	4.52	23	N ₂ O	290	0.004	950
16	2235	4.47	23	$CO_{2}/N_{2}O$	280	0.006	700
17	2 <mark>245</mark>	4.45	23	CO_2/N_2O	266	0.006	400
18	2 <mark>388</mark>	4.19	25	CO ₂	320	0.003	atmosphere
19	2515	3.98	35	window	340	0.003	surface
20	2660	3.76	100	window	340	0.002	surface
	14500	0.60	1000	• 1	1000/ 4	0.100/ 4	
21	14500	0.69	1000	window	100%A	0.10%A	cloud
22	11299	0.885	385	window	100%A	0.10%A	surface
23	10638	0.94	550	H ₂ O	100%A	0.10%A	Water vapor
24	10638	0.94	200	H ₂ O	100%A	0.10%A	Water vapor
25	8065	1.24	650	window	100%A	0.10%A	surface
26	6098	1.64	450	window	100%A	0.10%A	surface

Ch ann el nu mb er	Central frequency (MHz)	Channel width(MHz)*	Main absorbers	The most contributio n layer	NE∆N mW/(m2-sr-cm-1)
1	23,800	251.02			0.3
2	31,400	161.20			0.3
3	50,300	161.14			0.4
4	52,800	380.52	0 ₂	1000 hPa	0.25
5	53,596+/-115	168.20	O ₂	700 hPa	0.25
6	54,400	380.54	0 ₂	400 hPa	0.25
7 4	54,940	380.56	0 ₂	270 hPa	0.25
8	55,500	310.34	O ₂	180 hPa	0.25
9	f ₀ =57,290.344	310.42	0 ₂	90 hPa	0.25
10	f ₀ +/-217	76.58	O ₂	50 hPa	0.4
11	f ₀ +/-322.2 +/-48	3 <mark>5.</mark> 11	O ₂	25 hPa	0.4
12	f ₀ +/-322.2 +/-22	15.29	O ₂	12 hPa	0.6
13	f ₀ +/-322.2 +/-10	7.93	O ₂	5 hPa	0.8
14	f ₀ +/-322.2 +/-4.5	2.94	0 ₂	2 hPa	1.2
15	89,000	1998.9 8	C	in the	0.5

Spectral parameters:	AMSU-as MWTS
----------------------	--------------

Table 3.4	Table 3.4.1-1. AMSU-B Channel Characteristics (based on actual instrument build and measured NE Δ T from thermal vacuum data).								
Channel number	Center freq. of channel (GHz)	No. of pass bands	Bandwidth per passband (MHz)	NEAT ¹ (K)	Polarization angle ²				
16	89.0±0.9	2	1000	0.37	90-				
17	150.0±0.9	2	1000	0.84	90-				
18	183.31±1.00	2	500	1.06	90-				
19	183.31±3.00	2	1000	0.70	90-				
20	183.31±7.00	2	2000	0.60	90-				

¹ Values from first flight model.

² The polarization angle is defined as the angle from horizontal polarization (i.e., electric field vector parallel to satellite track) where is the scan angle from nadir. In this table, the polarization angle is horizontal when the angle indicated is and vertical when 90-.

	C ha nn el nu m be r	Central frequency (MHz)	Chan nel width(MHz)	Main absorbe rs	The most contri bution layer	NEAN WUm2-sr-cm4
ĺ	1	50,310	180			0.5
-	2	53,596±11 5	170	0 ₂	700 hPa	0.4
	3	54,940	400	O ₂	300 hPa	0.4
	4	57,290	330	0 ₂	90 hPa	0.4

Spectral parameters: AMSU-b s MWHS

Ch ann el nu mb er	Central frequency (MHz)	Channe l width(MHz)	Main absorber s	The most contrib ution layer	NEΔN mW/(m2-sr-cm-1)
1	150(V)	500×2	1		1.1
2	150(H)	500×2		Sec. 1	0.9
3	183.3±1	250×2	H ₂ O	400hp a	0.9
4	183.3 ±3	500×2	H ₂ O	600 hPa	0.9
5	183.3 ± 7	1000× 2	H ₂ O	800 hPa	0.9

Problem during the generation of FY3 sounding data

- Channel 12 of IRAS hasn't a corresponding channel in HIRS
- 15 pixels for each MWTS scanline are quite different from 30 pixels for AMSU-a
- 98 pixels for each MWHS scanline are quite different from 90 pixels for AMSU-b
- Other differences for NE∆N