www.ec.gc.ca

Impact of combined AIRS and GPS-RO data in the new version of the Canadian global forecast model

Data assimilation and Satellite Meteorology Section Dorval, Qc, Canada

Co-authors:

J. Aparicio, M.Buehner, G. Deblonde, M. Charron, M. Roch, C. Charette, A. Beaulne, S. MacPherson

Louis Garand May 8 2008

Gem-Strato: New model planned for late 2008

GOAL: raise model lid from 10 hPa to 0.1 hPa

+ improved physics + more satellite data assimilated

OUTLINE

- Model configuration changes
- Derivation of background error statistics
- Baseline Gem-Strato vs OPE with top at 10hPa
- Baseline GEM-Strato vs same + AIRS 87 (ch), Quickscat, SSMI as just implemented in OPE
- Add GPS-RO to above
- Add ~30 more AIRS channels allowed by higher top
- Conclusion

6/6/2008 Page 2

Model configuration changes

	Operational	GEM-Strato
No. of points In horizontal	800 x 600	800 x 600
Vertical coordinate	Eta (normalized sigma)	Hybrid
No. of levels in vertical	58	80
Тор	10 hPa	0.1 hPa
Sponge del ² at top (wind and temp)	4 levels	6 levels (to 1 hPa) No diffusion on mean zonal wind
Tropical oog8ponge layer	4 levels From top to 5Ω _a h₽a	8 levels From top to 3 hPa

New vertical coordinate

Physical parameterization changes

	Operational	GEM-Strato
Radiation	Fouquart/Bonnel (VIS) Garand (IR)	Li and Barker (CKD)
Non orographic GWD	No	HINES
Methane oxydation	No	Yes
Climatological Ozone	Kita and Sumi (1986)	Fortuin and Kelder (1998) under 0.3 hPa Haloe above 0.3hPa Mix at 0.3 hPa

Total cost	1	1.5 - 1.8

6/6/2008 Page 5

New background error covariances

- As for operational system, background error covariances estimated using "NMC method"
- With current approach for modelling the geostrophic balance impossible to filter noisy correlations of "balanced temperature" (T_b) between troposphere and stratosphere

 New approach is to explicitly compute the vertical correlations for T_b so that they can then be <u>localized</u> with Hadamard product (also cross-term between T and U)

 <u>Figure</u>: analysis increment of temperature from only aircraft data (no data above ~200hPa) using: old and new approach

6/6/2008

Environnement Canada

New background error covariances

std T winter

- Variances adjusted to be consistent with MLS retrieved temperatures and radiosonde data T and U, except above 1 hPa where T variances reduced to avoid problems
- Ratio of <u>unbalanced</u> to <u>total</u> <u>temperature</u> stddev from 24h-48h forecast differences maintained
- Figures show T std and ratios: above 100 hPa SH less balanced, more divergent than NH and larger temperature variances in NH. Reverse in summer

std T summer

Environnement Canada

First 4D-var results Strato vs Operational

120-h Temp errors vs raobs, NH

OPE: Top 10 hPa Strato: Top 0.1 hPa

No AIRS, No GPS-RO

Note major improvement For specific periods at 100 hPa with influence at lower levels

6/6/2008

Environment Canada Environnement Canada Type : E-T GZ 120 heures

120 /users/dot/armn/mrc/spool/g2ep1208ii/4h7str1/siiis2007020800.#8ggjapt;2dHznikpthere Nord

120 /users/dot/armn/mrc/spool/g2ep1208ii/4h7str1/siiis2007020800.#8ggjapt;2dHznikpthere Nord

120 /users/dot/armn/mrc/spool/g2ep1208ii/4h7str1/siiis2007020800.#8ti-th0ner((20N, 180W) (90N, 180E)

Stat.

First 4D-var results Strato vs Operational NH

Gain of ~6h at days 5-6, 500 hPa

No AIRS, No GPS-RO

6/6

First 4D-var results Strato vs Operational TRO & SH

Next step: add new data types just implemented

- Baseline Gem-strato is satisfactory, but tested without new data types which are about to become operational ... May 7 2008!
- Add new data recently implemented in OPE with top still at 10hPa
 - AIRS 87 channels
 - SSMI 7 channels from F13 and F14
 - Quickscat surface winds
 - Use all AMSU-A and AMSU-B scans (+25 % data)
- Off-line dynamical bias correction for all radiances (updated at every analysis using 15-day window)

See poster G. Debonde et al, on the impact of these new data In current model with top at 10 hPa

Baseline strato vs same+ AIRS + SSMI + Quickscat (3D-var)

Next step: add GPS RO

- Refractivity profiles assimilated from 4 to 40 km (~3 hPa) and at least 1 km above surface
- Satellites at time of tests:
 - CHAMP (1 satellite, aft antenna, ~150 profiles/day)
 - GRACE (1 satellite, aft antenna, ~150 profiles/day)
 - COSMIC (6 satellites, fwd & aft antennae, ~1500 profiles/day)
- Total: ~500 profiles/6h step, excellent worldwide sampling (non repeating)
- Each profile contributes ~40 data vertically (vertical thinning at 1 km, original 200 m)
- All instruments are of the same type
- Assumed non-biased
- Background Error Check : -0.05< (O-F6h)/F6h <0.05 corresponds to about 12 K
- Obs error small: 0.5 to 1.5%, assigned dynamically

6/6/2008 Page 13

6-h validation with vs without GPS-RO, 3D-var

"with" includes AIRS, SSMI, Quickscat as used with top at 10 hPa

120-h validation with vs without GPS-RO, 3D-var anal cycle

"with" includes AIRS, SSMI, Quickscat as used with top at 10 hPa

Impact of GPS-RO (with, without) at 300hPa

Gain of ~2 h HN and ~3-4 h HS at days 3 to 6

Page 16

Next step: additional AIRS allowed by higher lid

- Add 30 AIRS channels on top of current 87
- from # 20 to #204
- Highest is # 72 peaking at ~30
 Hpa
- Previous highest was #156 with peak near 150 hPa
- Channels with significant contribution at model top not used

6/6/2008 Page 17

Additional AIRS channels: preliminary impact results (based on 28 96-h forecasts)

Environment

Issue: Tails of AIRS Jacobians may create large temperature increments in the stratosphere

Black: normal result of AIRS alone assimilation

Blue: effect of tail of Jacobian cut above 1 mb

Ideal: top still higher and more observations above 5 hPa Current position is not to cut tails, rely on AMSU-14 + GPSRO to control 0.1-10 hPa layer. GPS-RO up to 0.1 mb soon available.

Issue: Drift with dynamic bias correction AMSU-A 11-14?

same with GPSRO

Global BC ______ Global (O-P) -----

System seems to drift with dynamic BC GPSRO has little impact on ch 13 stats Just a long cycle or real drift? Current status: keep static BC for 11-14

Summary

Model lid raised to 0.1 hPa with:

- Improved model physics, hybrid coordinate
- Improved approach for background error statistics
- Use of GPSRO up to 40 km (soon 60 km)
- More AIRS channels (IASI soon!)

IMPACT:

- 6-12 hours of predictability gain at day 5, Geopotential 100 to 500 hPa
- Very large improvement above 200 hPa.

SYNERGY:

- Raising lid has highest impact in NH winter
- Adding AIRS has highest impact in SH for both seasons
- Adding GPSRO has similar impact in both hemispheres

ISSUES:

- Possible drift at model top with dynamical bias correction for AMSU-A 11-14
- AIRS tails can create large increments in stratosphere

