Recent developments in the use of ATOVS data at ECMWF

Niels Bormann, Shinya Kobayashi, Marco Matricardi, Tony McNally, Blazej Krzeminski, Jean-Noël Thépaut and Peter Bauer

Current use of ATOVS data

Channels used:

HIRS: channel 4-7, 11, 14, 15 over sea; 12 over sea+low orography only AMSU-A: channels 5,6 over sea+low orography; 7-14 land+sea AMSU-B/MHS: channel 5 over sea only; 3,4 sea+low orography

	HIRS (2 used)	AMSU-A (5 used)	AMSU-B/MHS (3 used)	EARS (except HIRS)
NOAA-15	no: unstable	yes (not ch 6, 11, 14)	no: quality	yes
NOAA-16	no: unstable	yes (not ch 5-7/8)	no: quality	yes
NOAA-17	yes	Instrument failed	yes	yes
NOAA-18	no: unstable	yes	yes	yes
AQUA	n/a	yes (not ch 5-7)	n/a	n/a
METOP-A	yes	yes	yes	n/a

ECMWI

Use of METOP-A AMSU-A/MHS data

Impact on 3-day forecast of 500 hPa geopotential: EXP – CTL, 19 cases Normalised difference in the RMS forecast error for 500 hPa geopotential.

Small positive impact over Southern Hemisphere from adding METOP data as 5th AMSU-A, and 4th AMSU-B/MHS.

METOP AMSU-A & MHS data used operationally since 11 January 2007.

ECMWF

In operations:

- Update to AMSU-A RTTOV coefficients (no Zeeman effect)
- Zero bias in AMSU-A channel 14

Under development:

- Improved use of surface-sensitive AMSU-A/B/MHS channels over land (poster by Blazej Krzeminski)
- Revised bias correction for HIRS & AIRS short-wave channels

In operations:

- **1.** Update to AMSU-A RTTOV coefficients (no Zeeman effect)
- **2.** Zero bias in AMSU-A channel 14

Under development:

- Improved use of surface-sensitive AMSU-A/B/MHS channels over land (poster by Blazej Krzeminski)
- 3. Revised bias correction for HIRS & AIRS short-wave channels

- 1. Update to AMSU-A RTTOV coefficients (no Zeeman effect)
- 2. Zero bias in AMSU-A channel 14
- **3.** Revised bias correction for HIRS & AIRS short-wave channels

Transition from SSU to AMSU-A in ERA-40

Blue: AMSU-A14 on NOAA-15

Radiance difference between collocated SSU and AMSU-A data

Radiance difference (SSU3 on NOAA-11 - AMSU-A14 on NOAA-15)

Radiance difference between SSU3 on NOAA-11 and AMSU-A14 on NOAA-15 at SNO over Antarctica

Blue: observed differences

Red: computed by RTTOV

ECMWF

Line shapes in the presence of a magnetic field

Impact of the Zeeman splitting effect on the weighting function

Weighting functions for AMSU-A channel 14 computed by line-by-line models

ECMW

Consistency between SSU and AMSU-A

Figure: Radiance difference between SSU3 on NOAA-11 and AMSU-A14 on NOAA-15 at SNO over Antarctic

Blue: observed difference

Red (left): difference computed by old RTTOV

Red (right): difference computed by LBL model without Zeeman effect

ECMWF 👥

Impact of the new RTTOV coefficients on stratospheric temperature analysis

Temperature analysis averaged from 60S to 90S, new RTTOV coefficients for AMSU-A

1. Update to AMSU-A RTTOV coefficients (no Zeeman effect)

2. Zero bias in AMSU-A channel 14

3. Revised bias correction for HIRS & AIRS short-wave channels

Removal of Zeeman effect and zero bias for AMSU-A channel 14 in operations

Departure statistics for used NOAA-18 AMSU-A, NH, June 2007

Old bias correction (after ~1 year of variational bias correction) New bias correction Old FG (solid) or analysis (dotted) departures New FG (solid) or analysis (dotted) departures

ECMWF

Operational since 6 November 2007.

- 1. Update to AMSU-A RTTOV coefficients (no Zeeman effect)
- **2.** Zero bias in AMSU-A channel 14
- 3. Revised bias correction for HIRS & AIRS short-wave channels

HIRS/AIRS short-wave channels: Day/night biases

Obs-FG biases (K, after bias correction) for July 2007, 9-21 Z only

Day/night bias of about 0.3 K

AIRS channel 1928 (4.464 µm)

HIRS/AIRS short-wave channels: Day/night biases

Histogram of FG departures for METOP-A HIRS channel 15 as function of cos(solar zenith angle); See also McMillin and Crosby (2000).

Updated bias correction for short wave channels for HIRS (ch 14 & 15) and AIRS (ch 1921-1928): Additional bias predictor, zero during night time, and cos(solar zenith angle) at day time.

HIRS/AIRS short-wave channels

HIRS/AIRS short-wave channels

Impact on mean analyses for 12 Z 500 hPa geopotential [gpm], July 2007: Revised bias predictors - old

Summary

- Introduction of METOP ATOVS data gave a small positive forecast impact over the Southern Hemisphere.
- New AMSU-A RTTOV coefficients that exclude the Zeeman effect lead to better consistency with SSU data.
- AMSU-A channel 14 is now assimilated without bias correction to prevent variational bias correction to drift in the stratosphere.
- Revised bias correction for HIRS and AIRS short-wave channels reduces previous day/night biases.

