Assimilation of radiance data at JMA: recent developments and prospective plans

K. Okamoto*, H. Owada, T. Ishibashi and T. Egawa

Numerical Prediction Division (NPD)/ Japan Meteorological Agency (JMA)

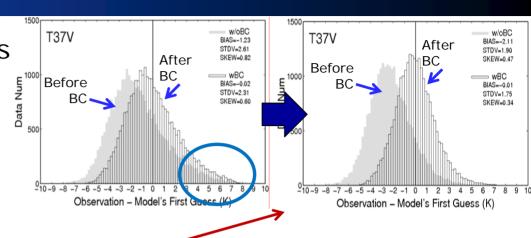
ITSC16, Angra dos Reis, Brazil, 7-13 May 2008

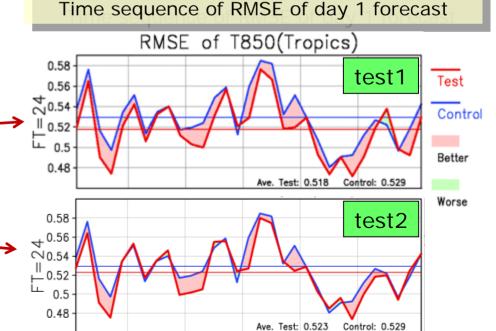
NWP models of JMA (Nov.2007~)

1		(=1.)	
	F0		3
	3		E Control
1 1		7	7
		V.	

Model	Global Model (GSM)	Meso-scale Model (MSM)
Resolution H/V(top height)	TL959 (20km)/60(0.1hPa) *Before Nov.2007: TL319(60km)/40(0.4hPa)	5km/50 (21.8km)
Forecast range (Initial time)	84h (00,06,18UTC) 216h (12UTC)	15h (00,06,12,18UTC) 33h (03,09,15,21UTC
Target	1~7 day forecast Aeronautical forecast	Disaster prevention information
Data Assimilation (outer/inner loop)	4D-Var (TL959/T159 or 20km/80km)	4D-Var (10/20km)
Window Length	6h	6h
Radiance Assimilation	RTTOV7, VarBC	X (T/TCWV/rain retrieval)

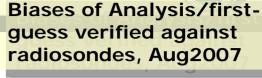
Satellite data assimilated

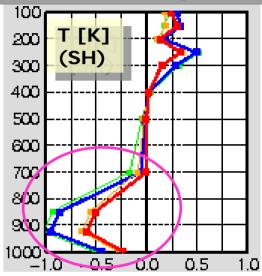


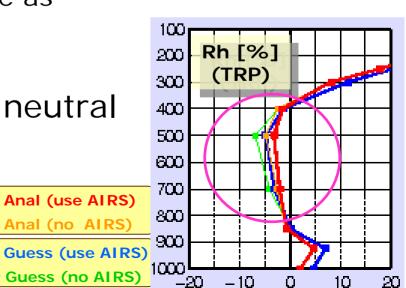

- Sounders
 - Radiance from NOAA15~18/AMSU-A,-B,MHS, Aqua/AMSU-A, Metop/AMSU-A,MHS in GDAS
 - Including AP-RARS and EARS
 - Temperature retrieval from NOAA15-18 and Metop/ATOVS in MDAS
- Microwave Radiometers (MWRs)
 - Radiance from DMSP/SSMI, TRMM/TMI and Aqua/AMSR-E in GDAS
 - Total Column Water Vapor (TCWV) and Rain Rate retrieval in MDAS
- Scatterometer
 - Ocean surface wind vector from QuikSCAT/SeaWinds in GDAS & MDAS
- GPS-RO (Radio Occultation)
 - Refractivity from CHAMP in GDAS
- AMV (Atmospheric Motion Vector) from Aqua+Terra/MODIS in GDAS
 GDAS: Global Data Assimilation System
- Geostationary satellites
 - MDAS: Meso-scale Data Assimilation System
 - AMV from MTSAT-1R, Meteosat7,9, GOES11,12 in GDAS & MDAS
 - CSR (clear sky radiance) from MTSAT-1R in GDAS

MW window channel assimilation

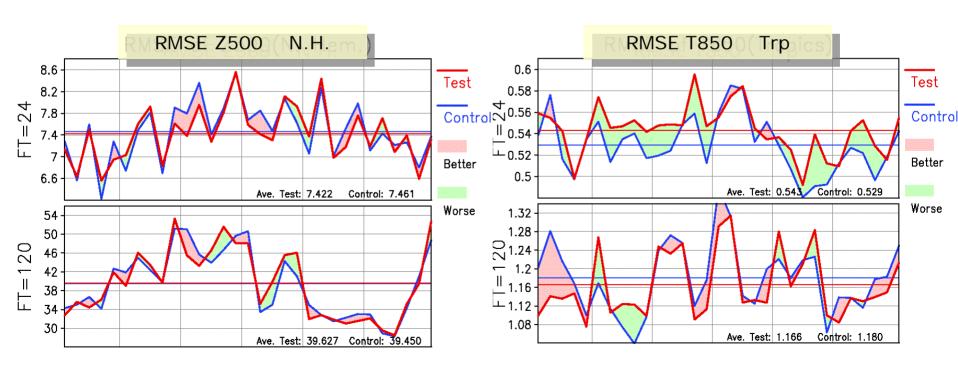
- Operationally assimilate less cloud affected radiances of SSM/I, TMI and AMSR-E in GDAS since May 2006
 - V.Pol only
 - VarBC
- test1: Improve QC and BC
 - Stricter cloud screening & addition of total column cloud liquid water predictor in VarBC
 - Small but consistent positive impact on the forecast of T850
- test2: Add SSMIS+test1
 - 19V, 22V, 37V, 92V
 - Neutral impact from SSMIS window ch






AIRS assimilation (ongoing development)

- Assimilate radiances 54ch/324ch over the sea
 - Channel selection using Entropy Reduction (Rodgers 2000)
 - Detect cloud-affected radiances based on McNally and Watts (2003)
 - Comparison with CloudSat showed performance enough for QC (in poster)
 - Bias correction scheme is the same as ATOVS except predictors in VarBC
 ■ Tbobs, 1/cosθ, const
- Positive impact on analysis but neutral or negative on forecast
 - reduces model biases of temperature and moisture.



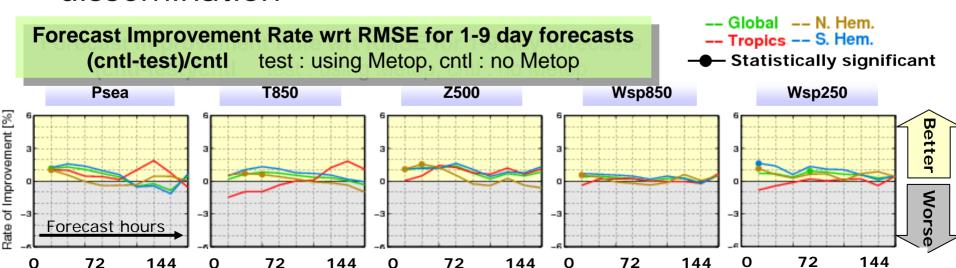
AIRS radiance assimilation

- Degrades forecast skills of the lower tropospheric temperature
- Possibely caused by the conflict of analysis increment with model trend

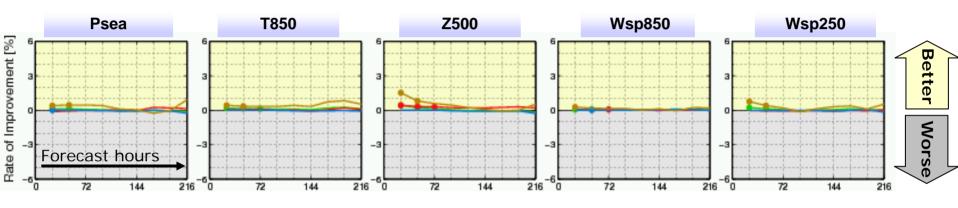
Time sequence of RMSE of 1- & 5-day forecasts verified against the initials

Other topics on Poster 6.9

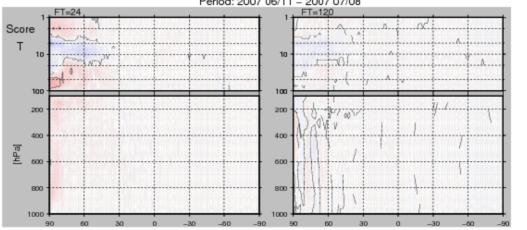
- Metop/ATOVS impact
- AP-RARS & EARS impact
- Clear Sky Radiances (CSRs) of WV-ch from geostationary satellites
 - 1 geo vs. 5 geo
- AIRS radiance assimilation
 - CloudSat comparison
- Plans


End

Metop/AMSU-A & MHS assimilation


- Assimilate radiances in GDAS
 - Less cloud-affected, less land-surface-dependent radiances
 - Implement a static scan-dependent Bias Correction (BC) and adaptive air-mass dependent BC
 - Variational BC (VarBC) applied to air-mass BC
- Significantly positive impacts on forecasts, especially, of the geopotential height
- Moreover, great benefits of early and stable data dissemination

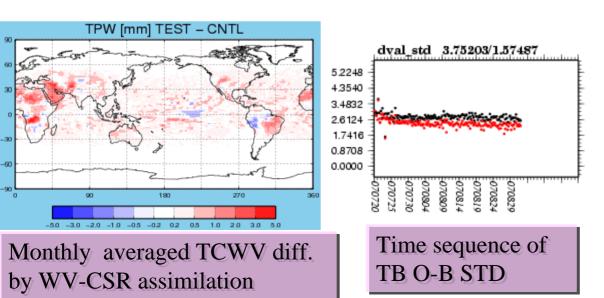
EARS impacts on forecasts

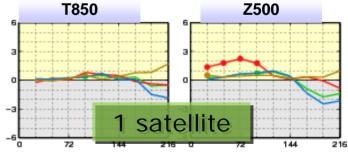


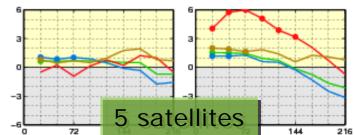
Forecast Improvement Rate average over 6/11-7/6 2007

Modified Rate (Vertical Zonalmean) $R(x) = \frac{E(Cntl) - E(test)}{E(Cntl) + E(Test)}x0.5$ Test:EARS Compare EARS(TEST) to CNTL_for_EARS(CNTL) Period: 2007 06/11 - 2007 07/08

Temperature improvement rate FT=24 (left) and 120 (right)




Geo. Sat. WVch CSR assimilation



- 5 Geo.Sat. WVch CSRs added
 - Increase humidity in the mid- to upper troposphere, and even in the lower troposphere in dry areas
 - Make analysis/guess closer to RAOB around 500hPa in RH and to AMSU-B&MHS channel 3 in TB
 - Positive impact on forecast, especially at day 1 to 3

5 geo.sat. CSR assimilation has greater positive impact than one (MTSAT-1R)

