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TopicsTopics

Optimal Spectral Sampling brief overview
Global training

Application to AIRS and IASI
Use of principal components of radiances
Treatment of multiple scattering

Current training method
Minimizing the number of scattering RT operations
Application to AIRS and MODIS
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Review of the Basic OSS MethodReview of the Basic OSS Method

OSS channel radiances modeled as (Moncet et al. 2003, 2001, 2008) 

Channel-average radiance is modeled as weighted average of 
monochromatic radiances
Wavenumbers νi (nodes) and weights wi are optimally selected to fit 
calculations from a reference line-by-line model for a globally 
representative set of profiles (training set)
Monochromatic absorption coefficients from look-up tables
Demonstrated to be generally faster and more accurate than methods 
that use regression to fit the space-to-level band transmittance (here 
called total path transmittance regression = TPTR methods)

For molecular absorption, non-scattering computations
Scattering case is discussed in this presentation
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Training Approaches: 1) Local TrainingTraining Approaches: 1) Local Training

Operates on individual channels, one at a time 
Nodes for each channel required to be within spectral range of 
channel response

Nodes may be shared between channels with overlapping 
responses

AIRS (2378 channels):
Average: 11 
nodes weighted 
per channel
Average: 1.3 
nodes/channel 
overall 
(accounts for 
sharing)

nodes weighted 
per channel

nodes weighted, adjusted for sharing
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Training Approaches: 2) Global TrainingTraining Approaches: 2) Global Training

Operates on groups of channels (up to the full channel set)  
simultaneously
Uses clustering of nodes to efficiently account for spectral 
correlations

Condenses the information of the full channel set into a 
minimal number of nodes

Monochromatic RT at a relatively few nodes determines 
radiances for full channel set
Optionally, can be fit to channel subset, or first X principal 
components of channel set, or radiances filtered by PC 
transformation

Reduces information relative to full channel set
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AIRS ExampleAIRS Example

Global20 
Surface emissivity assumed linear over contiguous 20 cm-1 
intervals (needs to be verified with real data)
Global training applied independently to each interval
Provides extra robustness by avoiding reliance on correlations 
from distant spectral points

Extra robustness for surfaces whose emissivity spectra are outliers 

Local* Global20 Global Local Global20 Global
# channels 2378 2378 2378 281 281 281
# nodes 5340 2323 507 1809 993 328
# nodes / # channels 2.25 0.98 0.21 6.44 3.53 1.17
N' 9.84 35.60 203.63 11.75 30.53 238.43

AIRS - full channel set AIRS - 281 channel subset

N’ = number of nodes contributing to radiance computation in 1 channel (on average)
Training conditions:
• 0.05 K accuracy requirement
• Extra wide range of incidence angles (0°–70.5°)*
• Variable gases H2O, O3

*difference from data 
in chart 4
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Application to IASIApplication to IASI

Global and local training results

Training conditions:
• 0.05 K accuracy requirement
• 13 variable gases: H2O, O3, CO2, CO, CH4, N2O, F11, F12, CCl4, HNO3, SO2, OCS, CF4

• 5  fixed gases: O2, NO, NO2, NH3, N2
• Sources: ECMWF for H2O, O3; Global Modeling Initiative chem model for CO2, CO, CH4, N2O, F11, 

M. Matricardi for F12, CCl4, HNO3

• 2002-2012 secular trends added for CO2 and CH4

• Randomization was applied to all species for robust training
• Emissivity spectra for global training is random walk, with 20-cm−1 steps
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IASI ValidationIASI Validation

Validation with 48 independent UMBC profiles
Each profile assigned 3 CO2 profiles: 

Minimum (●), mean (●), maximum (●)
Validates robustness of training over CO2 trends

From local training
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OSS with Principal ComponentsOSS with Principal Components

Option may be useful when some information loss is accepted as 
trade-off for speed

When eigenvector truncation goes beyond eliminating 
redundancy

Can be done without significant revision to OSS training
Filter training-profile radiances with truncated 
eigenvectors

Convert to PCs, then use reverse transformation to recover 
physical-space radiances

OSS training achieves required accuracy for every channel 
(PC filtered)
OSS coefficients project only on retained PCs (within 
training accuracy)

Forward model output in terms of PCs efficiently done by 
combining eigenvectors with OSS coefficients in advance

nodechan RWR = chanm RUPC =

nodemnodem RWRWUPC == mm WWU ≡where

with m retained PCs
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Scattering Forward ModelScattering Forward Model

OSSSCAT is single-wavelength version of CHARTS adding-
doubling RTM

Uses same molecular absorption and weighted 
monochromatic radiances as non-scattering RTM
Cloud module converts from physical properties (e.g., IWP, 
LWP, Deff, top, thickness, T(p)) to optical properties 
(absorption and scattering optical depths, asymmetry 
parameter)

Look-up table
Size distributions based on in-situ aircraft measurements
Mie for liquid
MADA for ice – with temperature-dependent shape recipes

Optical properties linearly interpolated from hinge points 
to OSS nodes
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Cloudy TrainingCloudy Training

Must include cloud/aerosol optical properties in training
Over wide bands: training can be done by using a database 
of cloud/aerosol optical properties
More general training obtained by breaking spectrum in 
intervals of the order of 10 cm-1 in width (impact of 
variations in cloud/aerosol properties on radiances is quasi-
linear) and by performing independent training for each 
interval 

Lower computational gain but increased robustnes
Direct cloudy radiance training approach

Clouds tend to mask molecular structure, which makes 
training less demanding
If trained for mixture of clear and cloudy atmospheres in 
direct training, clear-sky performance degrades
Train with clear-sky and several clouds simultaneously, 
requiring all to meet the accuracy criterion
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Cloudy and Clear FitCloudy and Clear Fit

OSS selection requires accuracy threshold be met for each 
training set individually and simultaneously

Clear Liquid Clouds Ice Clouds Ice+Liquid

AIRS Channel Set
Scattering included

Fit error  -- all meet 0.05-K rms requirement
Nadir view shown
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Multiple Scattering AccelerationMultiple Scattering Acceleration

With scattering, execution time is dominated by radiative transfer integration
Contrasts with non-scattering, where band transmittance calculation may 
be a bigger factor
OSS RT timing ~proportional to number of nodes
TPTR RT timing ~proportional to number of channels
OSS is faster than TPTR methods only when the number of nodes / 
number of channels <~1

Scattering calculations do not have to be performed for each node 
Scattering correction may be predicted based on a few nodes only:

R is radiance from scattering model
Rns is radiance from non-scattering model
w are the ordinary OSS weights
k are a subset of the set of the OSS nodes (S) for the channel
C are regression coefficients

Number of predictors can be tuned to control balance between cloudy radiance 
accuracy and computation speed

Some relaxation of accuracy may be tolerable in clouds with high optical 
depth, in proportion to uncertainties in optical properties
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Scattering Prediction Performance 
for MODIS 

Scattering Prediction Performance 
for MODIS 

* for error threshold 0.05 K, clear and cloudy training
† for scattering prediction error threshold 0.2 K

1.713.6Average

12114.085 - 14.38536

12413.785 - 14.08535
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Localized training used
Generalized may require fewer predictors



- 15 -

Reference for Performance: 
TPTR Method for MODIS

Reference for Performance: 
TPTR Method for MODIS

Simulated TPTR method
Ideal case of no error in 
transmittance regression
Effectively approximates 
reflected component as 
product of band-averages 

neglects in-band 
correlations
biggest impact is with low 
emissivity = high 
reflectivity r

Ice cloud 
(nadir)

Ice cloud 
(60°)

Liquid cloud 
(nadir)

Liquid cloud 
(60°)

Desert
(high reflectivity surface)

Channel 27

Channel 28

Channel 29

↓≈ RΤrRrefl
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OSS Performance for MODIS 
Accelerated with Scattering Selection

OSS Performance for MODIS 
Accelerated with Scattering Selection

Desert
(high 
reflectivity 
surface)

Channel
27

Channel
28

Channel
29

Ice cloud 
(nadir)

Ice cloud 
(60°)

Liquid cloud 
(nadir)

Liquid cloud 
(60°)

2 predictor nodes 3 predictor nodes all nodesScattering:

Generally 1-2 
predictors are 
sufficient to 
exceed TPTR 

accuracy
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SummarySummary

Global training with correlated clustering minimizes number of 
nodes for channel set as a whole
Flexibility – same monochromatic (physical, general) framework 
provides options to meet user requirements 

Produce radiances for full channel set
Retrieve/assimilate at OSS nodes

Avoids computational cost of mapping from nodes to channels
Involves channel → node transformation of measurement 
error covariance

Treatment of scene-dependent noise depends on application
Scattering version maintains accuracy in clear areas
Scattering can be accelerated with process to select subset of 
nodes to do scattering

Requires testing with global training



Backup



- 19 -

InversionInversion

Variational retrieval methods:
Average channel uses ~150 nodes
Mapping Jacobians from node to 
channel space partially offsets 
speed gain

Alternatives: 
(a) PC (reduces first dimension 

of matrix A)
(b) Operate directly 

in node space

Avoids Jacobian transformation 
altogether and reduce K-matrix 
size (inversion speed up)

for AIRS: 2378 channels 
-> 250 nodes
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Inversion (continued)Inversion (continued)

Need strategy for handling input -
dependent noise

Scene temperature 
dependence (clear/cloudy) 

worse in SW band
Cloud clearing noise 

amplification
H-transformation not overly sensitive to 

noise
For clear retrievals: sufficient to 

update noise covariance 
regionally

Retrieval performance – constant noise

Channel space retrieval
Node space retrieval


