Fast Forward Modeling in Scattering Atmospheres with Optimum Spectral Sampling

Jean-Luc Moncet, Gennady Uymin, Alan Lipton, Ned Snell

Atmospheric and Environmental Research, Inc.

Topics

- Optimal Spectral Sampling brief overview
- Global training
 - Application to AIRS and IASI
- Use of principal components of radiances
- Treatment of multiple scattering
 - Current training method
 - Minimizing the number of scattering RT operations
 - Application to AIRS and MODIS

Review of the Basic OSS Method

OSS channel radiances modeled as (Moncet et al. 2003, 2001, 2008)

$$\overline{R} = \int_{\Delta \nu} \phi(\nu) R(\nu) d\nu \cong \sum_{i=1}^{N} w_i R(\nu_i); \qquad \nu_i \in \Delta \nu$$

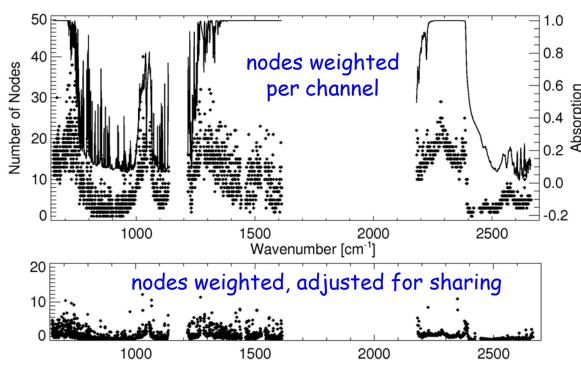
- Channel-average radiance is modeled as weighted average of monochromatic radiances
- Wavenumbers v_i (nodes) and weights w_i are optimally selected to fit calculations from a reference line-by-line model for a globally representative set of profiles (training set)
- Monochromatic absorption coefficients from look-up tables
- Demonstrated to be generally faster and more accurate than methods that use regression to fit the space-to-level band transmittance (here called total path transmittance regression = TPTR methods)
 - For molecular absorption, non-scattering computations
 - Scattering case is discussed in this presentation

Training Approaches: 1) Local Training

- Operates on individual channels, one at a time
- Nodes for each channel required to be within spectral range of channel response
 - Nodes may be shared between channels with overlapping responses

AIRS (2378 channels):

- Average: 11 nodes weighted per channel
- Average: 1.3
 nodes/channel
 overall
 (accounts for
 sharing)



Training Approaches: 2) Global Training

- Operates on groups of channels (up to the full channel set) simultaneously
- Uses clustering of nodes to efficiently account for spectral correlations
 - Condenses the information of the full channel set into a minimal number of nodes
- Monochromatic RT at a relatively few nodes determines radiances for full channel set
- Optionally, can be fit to channel subset, or first X principal components of channel set, or radiances filtered by PC transformation
 - Reduces information relative to full channel set

AIRS Example

	AIRS - full channel set			AIRS - 281 channel subset			
	Local*	Global20	Global	Local	Global20	Global	
# channels	2378	2378	2378	281	281	281	
# nodes	5340	2323	507	1809	993	328	
# nodes / # channels	2.25	0.98	0.21	6.44	3.53	1.17	
N'	9.84	35.60	203.63	11.75	30.53	238.43	

N' = number of nodes contributing to radiance computation in 1 channel (on average)

Training conditions:

• 0.05 K accuracy requirement

• Extra wide range of incidence angles (0°-70.5°)*

• Variable gases H_2O , O_3

*difference from data in chart 4

• Global20

- Surface emissivity assumed linear over contiguous 20 cm-1 intervals (needs to be verified with real data)
- Global training applied independently to each interval
- Provides extra robustness by avoiding reliance on correlations from distant spectral points
 - Extra robustness for surfaces whose emissivity spectra are outliers

Application to IASI

Global and local training results

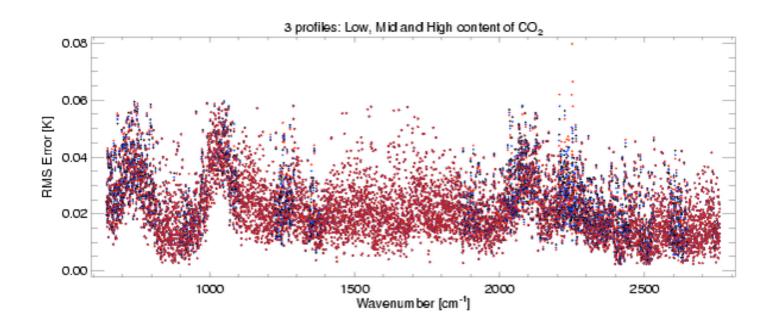
			Number of nodes		
IASI band	Spectral range (cm ⁻¹)	Number of channels	Local	Global	Global nodes/ channels
1	645-1210	2261	1855	220	0.097
2	1210-2000	3160	2927	281	0.089
3	2000-2760	3040	2639	321	0.11
Total		8461	7421	822	

Training conditions:

- 0.05 K accuracy requirement
- 13 variable gases: H_2O , O_3 , CO_2 , CO, CH_4 , N_2O , F11, F12, CCl_4 , HNO_3 , SO_2 , OCS, CF_4
- 5 fixed gases: O₂, NO, NO₂, NH₃, N₂
- Sources: ECMWF for H_2O , O_3 ; Global Modeling Initiative chem model for CO_2 , CO, CH_4 , N_2O , F11, M. Matricardi for F12, CCl_4 , HNO_3
- * 2002-2012 secular trends added for CO_2 and CH_4
- Randomization was applied to all species for robust training
- Emissivity spectra for global training is random walk, with 20-cm⁻¹ steps

IASI Validation

- Validation with 48 independent UMBC profiles
- Each profile assigned 3 CO₂ profiles:
 - Minimum (•), mean (•), maximum (•)
- Validates robustness of training over CO₂ trends



OSS with Principal Components

- Option may be useful when some information loss is accepted as trade-off for speed
 - When eigenvector truncation goes beyond eliminating redundancy
- Can be done without significant revision to OSS training
 - Filter training-profile radiances with truncated eigenvectors
 - Convert to PCs, then use reverse transformation to recover physical-space radiances
 - OSS training achieves required accuracy for every channel (PC filtered)
 - OSS coefficients project only on retained PCs (within training accuracy)
- Forward model output in terms of PCs efficiently done by combining eigenvectors with OSS coefficients in advance

$$\mathbf{R}_{chan} = \mathbf{W} \mathbf{R}_{node}$$
 $\mathbf{PC} = \mathbf{U}_m \mathbf{R}_{chan}$ with m retained PCs

$$\mathbf{PC} = \mathbf{U}_m \ \mathbf{W} \ \mathbf{R}_{node} = \mathbf{W}_m \ \mathbf{R}_{node}$$
 where $\mathbf{U}_m \ \mathbf{W} \equiv \mathbf{W}_m$

Scattering Forward Model

- OSSSCAT is single-wavelength version of CHARTS addingdoubling RTM
 - Uses same molecular absorption and weighted monochromatic radiances as non-scattering RTM
 - Cloud module converts from physical properties (e.g., IWP, LWP, D_{eff}, top, thickness, T(p)) to optical properties (absorption and scattering optical depths, asymmetry parameter)
 - Look-up table
 - Size distributions based on in-situ aircraft measurements
 - Mie for liquid
 - MADA for ice with temperature-dependent shape recipes
 - Optical properties linearly interpolated from hinge points to OSS nodes

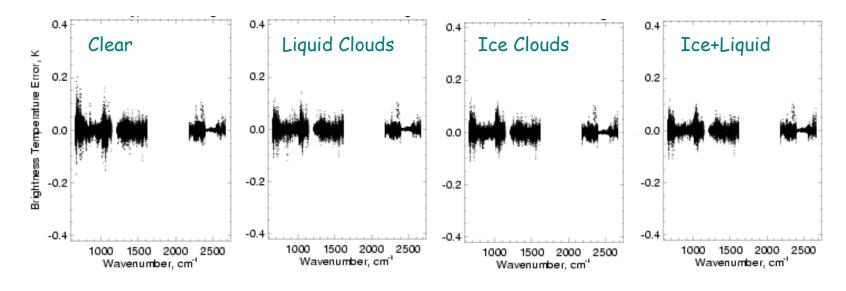
Cloudy Training

- Must include cloud/aerosol optical properties in training
 - Over wide bands: training can be done by using a database of cloud/aerosol optical properties
 - More general training obtained by breaking spectrum in intervals of the order of 10 cm-1 in width (impact of variations in cloud/aerosol properties on radiances is quasilinear) and by performing independent training for each interval
 - Lower computational gain but increased robustnes
- Direct cloudy radiance training approach
 - Clouds tend to mask molecular structure, which makes training less demanding
 - If trained for mixture of clear and cloudy atmospheres in direct training, clear-sky performance degrades
 - Train with clear-sky and several clouds simultaneously, requiring all to meet the accuracy criterion

Cloudy and Clear Fit

 OSS selection requires accuracy threshold be met for each training set individually and simultaneously

AIRS Channel Set
Scattering included
Fit error -- all meet 0.05-K rms requirement
Nadir view shown



Multiple Scattering Acceleration

- With scattering, execution time is dominated by radiative transfer integration
 - Contrasts with non-scattering, where band transmittance calculation may be a bigger factor
 - OSS RT timing ~proportional to number of nodes
 - TPTR RT timing ~proportional to number of channels
 - OSS is faster than TPTR methods only when the number of nodes / number of channels <~1
- Scattering calculations do not have to be performed for each node
 - Scattering correction may be predicted based on a few nodes only:

$$\overline{R} \cong \sum_{i=1}^{N} w_i R^{ns}(v_i) + \sum_{k \in S} C_k \left[R(v_k) - R^{ns}(v_k) \right]$$

- R is radiance from scattering model
- $lacktriangleright R^{ns}$ is radiance from non-scattering model
- w are the ordinary OSS weights
- \bullet k are a subset of the set of the OSS nodes (S) for the channel
- C are regression coefficients
- Number of predictors can be tuned to control balance between cloudy radiance accuracy and computation speed
 - Some relaxation of accuracy may be tolerable in clouds with high optical depth, in proportion to uncertainties in optical properties

Scattering Prediction Performance for MODIS

MODIS Channel #	Bandpass (µm)	Number of nodes*	Number of predictor nodes [†]
20	3.660 - 3.840	10	4
21	3.929 - 3.989	5	2
22	3.929 - 3.989	3	2
24	4.433 - 4.498	19	2
25	4.482 - 4.549	18	2
27	6.535 - 6.895	14	1
28	7.175 - 7.475	15	2
29	8.400 - 8.700	14	3
31	10.780 - 11.280	4	1
32	11.770 - 12.270	4	1
33	13.185 - 13.485	18	1
34	13.485 - 13.785	21	1
35	13.785 - 14.085	24	1
36	14.085 - 14.385	21	1
Average		13.6	1.7

Selected IR channels

Localized training used
Generalized may require fewer predictors

^{*} for error threshold 0.05 K, clear and cloudy training

[†] for scattering prediction error threshold 0.2 K

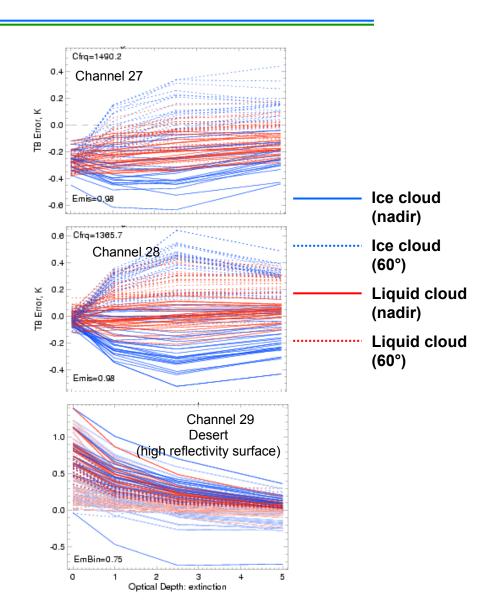
Reference for Performance: TPTR Method for MODIS

Simulated TPTR method

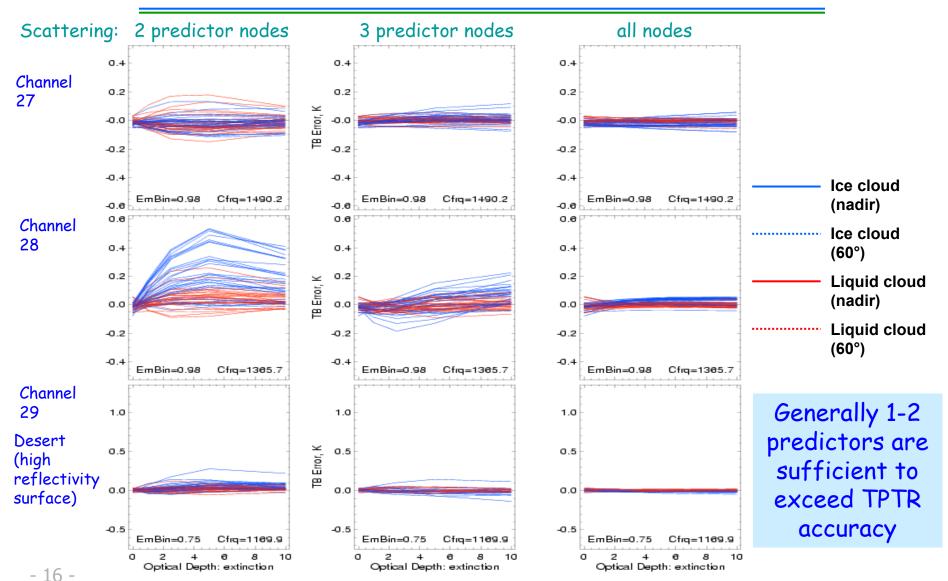
- Ideal case of no error in transmittance regression
- Effectively approximates reflected component as product of band-averages

$$\overline{R}_{refl} \approx \overline{r} \overline{T} \overline{R}^{\downarrow}$$

neglects in-band correlations biggest impact is with low emissivity = high reflectivity r



OSS Performance for MODIS Accelerated with Scattering Selection



Summary

- Global training with correlated clustering minimizes number of nodes for channel set as a whole
- Flexibility same monochromatic (physical, general) framework provides options to meet user requirements
 - Produce radiances for full channel set
 - Retrieve/assimilate at OSS nodes
 - Avoids computational cost of mapping from nodes to channels
 - ullet Involves channel o node transformation of measurement error covariance
 - Treatment of scene-dependent noise depends on application
- Scattering version maintains accuracy in clear areas
- Scattering can be accelerated with process to select subset of nodes to do scattering
 - Requires testing with global training

Backup

Inversion

- Variational retrieval methods:
 - Average channel uses ~150 nodes
 - Mapping Jacobians from node to channel space partially offsets speed gain
- Alternatives:
 - (a) PC (reduces first dimension of matrix A)
 - (b) Operate directly in node space

$$\mathbf{y}^{\mathbf{m}} = \mathbf{A} \mathbf{\hat{y}}_{0}^{\mathbf{m}} \rightarrow \mathbf{\hat{y}}_{0}^{\mathbf{m}} = \mathbf{H} \mathbf{y}^{\mathbf{m}}$$

Avoids Jacobian transformation altogether and reduce K-matrix size (inversion speed up)

•for AIRS: 2378 channels
→ 250 nodes

$$\delta x_{n+1} = \left(\mathbf{K}_{\mathbf{n}}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K}_{\mathbf{n}} + \mathbf{S}_{\mathbf{x}}^{-1}\right)^{-1} \mathbf{K}_{\mathbf{n}}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \left[\left(y_{n} - y^{m} \right) + \mathbf{K}_{\mathbf{n}} \delta x_{n} \right],$$
 where,

$$y = Ay$$
 and

$$\widetilde{\mathbf{y}}^m = \left(\mathbf{A}^T \mathbf{S}_{\varepsilon}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{S}_{\varepsilon}^{-1} \mathbf{y}^m$$

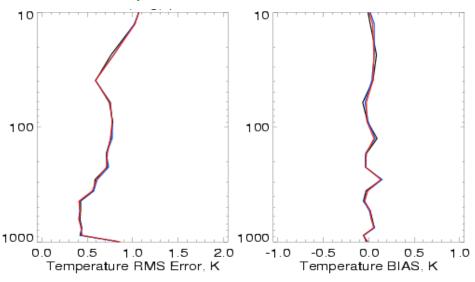
$$\widetilde{\mathbf{S}}_{\varepsilon}^{-1} = \mathbf{A}^T \mathbf{S}_{\varepsilon}^{-1} \mathbf{A}$$

$$\delta \mathbf{x}_{n+1} = \left(\widetilde{\mathbf{K}}_{n}^{T} \widetilde{\mathbf{S}}_{\varepsilon}^{-1} \widetilde{\mathbf{K}}_{n} + \mathbf{S}_{x}^{-1}\right)^{-1} \widetilde{\mathbf{K}}_{n}^{T} \widetilde{\mathbf{S}}_{\varepsilon}^{-1} \left[\left(\widetilde{\mathbf{y}}_{n} - \widetilde{\mathbf{y}}^{m}\right) + \widetilde{\mathbf{K}}_{n} \delta \mathbf{x}_{n}\right]$$

**Equivalent to

$$\delta \mathbf{x}_{n+1} = \left(\mathbf{K}_{n}^{T} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K}_{n} + \mathbf{S}_{x}^{-1} \right)^{-1} \mathbf{K}_{n}^{T} \mathbf{S}_{\varepsilon}^{-1} \left[\left(\mathbf{y}_{n} - \mathbf{A} \mathbf{H} \mathbf{y}^{m} \right) + \mathbf{K}_{n} \delta \mathbf{x}_{n} \right]$$

Inversion (continued)



Channel space retrievalNode space retrieval

Need strategy for handling input - dependent noise

Scene temperature dependence (clear/cloudy) worse in SW band

Cloud clearing noise amplification

H-transformation not overly sensitive to noise

For clear retrievals: sufficient to update noise covariance regionally

Pressure, mbar