

## ATMOSPHERIC CHEMISTRY USING IASI/METOP : OVERVIEW OF INITIAL RESULTS

Cathy Clerbaux (1), Piet Coheur (2) and Thierry Phulpin (3)

- (1) Service d'Aéronomie /IPSL INSU/CNRS
- (2) Université Libre de Bruxelles
- (3) CNES D

ITSC 16 ANGRO dos Reis 7-13 MAY 2008



## OUTLINE

Introduction
IASI for atmospheric chemistry
First results by SA-ULB
Other products
Future work for day-2
Conclusion



## INTRODUCTION

#### Strong support of CNES to atmospheric chemistry for

- Atmospheric composition and Climate
- Ozone depletion monitoring
- Development of applications and services
  - Air Quality
  - Hazards (fires, Volcanoes, etc.)

#### Through different actions

- At ISSWG level
- At national level :
  - Subsidizing the laboratories
  - Setting up R&D projects
  - Internal activities

#### The actors in France :

- Laboratories : SA, LPMAA, LMD, CNRM, LA, LISA
- NOVELTIS
- CNES
- Ether national data centre for atmospheric chemistry

## **COES** IASI : A very good tool for atmospheric chemistry

- Spectral range covering absorption bands of GG
- Adequate spectral resolution for columns (to demonstrate capabilities in the IR domain)
- Adequate spatial sampling
- Long time mission with continuity of data
- Very good absolute calibration





# **CODES** Monitoring of atmospheric composition with IASI at SA/ULB

#### The SA/ULB activities are organized along three main axes

- Climate variables (T, H2O, CH4, N2O, CO2, CFCs)
- Ozone hole chemistry (O3, HNO3)
- Operational services (O3 pollution peaks, fires: CO + other molecules, volcanoes: SO2, CO2, H2O)

#### SA-ULB developed two main methods of retrieval :

- NN for operational .
- 1d Var retrieval for research . (Zoom on areas) (a priori from Mozart)

#### Validation of Eumetsat L2 products not on purpose



## Cnes Operational trace gas retrieval from IASI (NN-SA)









CH<sub>4</sub>



A. Razavi (EGU, 2008)

#### CO



M. Pommier (EGU, 2008)

#### + Research products :

CO prof ,  $O_3$  prof ,  $H_2O$ ,  $HNO_3$ ,  $SO_2$ , other



## Climate variables: CH<sub>4</sub> total columns





4 days average, combined bands daytime

> A. Razavi (EGU, 2008)

ITSC-16

### Ozone chemistry



#### Validation O<sub>3</sub> total columns, Global scale



ITSC-16

Angra dos Reis

## **CCNES** IASI/METOP – Operational applications (GMES)

#### Pollution forecast





Ozone peaks

#### Fire detection





#### Volcanic plumes





#### Aviation threat

ITSC-16

7-13 May 2008

Long-range pollution

## Ozone $(O_3)$ - pollution peaks, South of Europe, 22-26 July 2007



ITSC-16

Angra dos Reis

## Carbon monoxide (CO) – Fires Greece, 25-28 August 2007



Courtesy D. Hurtmans, S. Turquety







Courtesy P. Coheur

## COLES Volcanic SO2

Sulfur dioxyde (SO<sub>2</sub>) – volcano plumes

Jebel at-Tair (Red sea), 1 October 2007

Ι



<u>Note</u>: Different profile information if entire 1100-1400 cm-1 interval or only 1100-1200 cm-1 is used. May be linked to problem with H2O at 1300 cm-1 (see weird SO2 band shape in the residual). Similar columns in both cases



ITSC-16



### **Results at Noveltis**

CO<sub>2</sub> (See poster by L.Chaumat et al)
 Heterogenous scenes (see poster by T. Phulpin et al)
 Assimilation of CO (C. Clerbaux with the support of Noveltis)





Assimilation of IASI CO column data in the LMDz-INCA chemistry-transport model (1)

- IASI level 2 CO column data provided by Service d'Aeronomie (SA). The columns are obtained with the neural network approach.
- The assimilation module is based on the Kalman filter and was developed by JF Lamarque and B. Khatattov (NCAR, USA)
- The module was adapted to work with IASI CO columns by NOVELTIS in the framework of a study funded by the CNES' TOSCA program (PI of the project: Cathy Clerbaux, SA)
- The figures shown are taken from the operational, near real-time assimilations put in place by NOVELTIS
  - starting date of the assimilation : 28/03/2008
  - starting model error: 50%
  - observation error: 1.E17 molec/cm2 over sea, 2.E17 molec/cm2 over land
  - model error growth: 0.005\*CO for each assimilation window of 30 minutes





## Assimilation of IASI CO column data in the LMDz-INCA chemistry-transport model

-13 Ma

 09/03/2008, assimilation of night observations only

0.62 80°N 0,46 0.3 0.14 -0.02-0.18LATITUDE œ -0.34-0.5 -0.6640°S -0.82 -0.98-1.14 80°S -1.3100°W 100°E LONGITUDE OmF(molec/cm2)\*1E-18

observations-forecast





Increment(molec/cm2)\*1E-18





## CO column, 07/04/2008



7-13 May 2008

ITSC-16

Angra dos Reis



## **Results at CNES**

CFCs
Cloud mask
Aerosols (Sand outbreak)

## **C**CNES Spectral signatures (2)

## **CFC and HNO<sub>3</sub>**



### 



12H



#### IASI L2 CO column\*1e18, molecules/cm<sup>2</sup>



- High cloud cover over Russia where strong apparent CO column

- High cloud cover over North Americawith low CO column



### 15 July 2007 (night)

#### Tb3 – TAvhrr 4



Tb3 – TAvhrr 5









Dust storm in Middle East, Mai



∆BT (K)= BT(•)-[BT(•)+BT(•)]/2



### **Future activities**

- Validation to be continued
- Some problem to fix in fast inversion method (emissivity, large scan angle)
- Compare with Eumetsat products
- Treatment of heterogenities (Cloud contaminated IFOVS)
- CH<sub>4</sub>, CFCs, CO<sub>2</sub> and others



## Conclusions

- Intercomparison of products (including Eumetsat L2)
- Feedback on spectroscopy
- Improve product screening
- Incorporate information on heterogenity
- Work on combination with other sensors (AMSU for T- profile, Gome 2)
- Assimilation



#### Ma

#### More information on

- http://smsc.cnes.fr/IASI
- http://www.eumetsat.int/

## Thank you