

Implementation of a new infrared sea surface emissivity model in the Community Radiative Transfer Model (CRTM)

Paul van Delst^{a,b,e}, Nicholas Nalli^{c,f}, James Jung^{a,d,f}, Yong Han^{a,f}, Quanhua Liu^{a,c,f}, and John Derber^{a,e}.

^a Joint Centre for Satellite Data Assimilation

^b SAIC

° PSGS Inc.

- ^d CIMSS/University of Wisconsin
- ^e NOAA/NWS/NCEP/EMC

f NOAA/NESDIS/STAR

- Introduction
- Description of infrared sea surface emissivity models (IRSSEMs) used in the CRTM
- Comparison of model emissivities
- Comparison of CRTM calculations using different emissivity models
- Comparison of Observed Calculated brightness temperature differences using different emissivity models.
- Summary
- Further work

Introduction

- CRTM is used in the NCEP/EMC data assimilation systems to simulate satellite radiance observations.
- Infrared water reflection is treated as Lambertian in the CRTM.
- Current emissivity model in CRTM is based on the Wu-Smith [1997] model in which the reflected sea surface emission is taken into account.
- Work by Hanafin and Minnett [2005] and Nalli et al. [2008a,b] has shown this methodology will underestimate the effective emissivity at larger zenith angles due to the quasi-specular reflection of downwelling atmospheric radiance into the sensor field-of-view.
- Difference between Wu-Smith and Nalli model emissivities in the longwave IR window region can be as high as 1%.

Infrared sea surface emissivity models (IRSSEM)

- Wu-Smith model (currently operational).
 - Uses Hale-Querry (Real part) and Segelstein (Imaginary part) for refractive indices.
 - Cox-Munk wave slope probability density function.
- Nalli model.
 - Choice of any of the available refractive index data sets (will show Hale-Querry and Wieliczka) as well as the Hale-Querry/Segelstein hybrid.
 - Choice of Cox-Munk or Ebuchi-Kizu wave slope probability distribution function.
 - Downwelling surface incident radiances are computed for climatological profiles. These downwelling radiances are used in RTE minimisation to derive an effective incidence angle to account for reflected atmospheric radiation.
- Implemented as a lookup-table (LUT) of effective emissivities as a function of frequency, zenith angle, and wind speed.
- Linear interpolation performed between LUT points.

Emissivity comparison. Hale-Querry refractive index; nadir

NO ATMOSA

MENT OF C

Emissivity comparison. Wieliczka refractive index; nadir

NID ATMOSA

TMENT OF C

Emissivity comparison. Hale-Querry refractive index; 30°

NO ATMOSA

TMENT OF C

0ms⁻¹

0ms⁻¹

).0ms⁻¹

0.994 0.992 0.990

0.988

0.986

0.984

0.982

0.980 800

Emissivity

Emissivity comparison. Wieliczka refractive index; 30°

NO ATMOSA

Emissivity comparison for 6.0ms⁻¹ and 30.0°

900

Frequency (cm⁻¹)

850

Wu-Smith (CM)

→ Nalli (CM)

÷

G- - Nalli (EK)

Emissivity comparison for 10.0ms⁻¹ and 30.0°

2nd Workshop on Remote Sensing and Modeling of Surface Properties 9-11 June 2009, Météo France, Toulouse, France

Emissivity comparison. Hale-Querry refractive index; 60°

NNO ATMOSA

TMENT OF C

Emissivity comparison. Wieliczka refractive index; 60°

²nd Workshop on Remote Sensing and Modeling of Surface Properties 9-11 June 2009, Météo France, Toulouse, France

CRTM ΔT_B comparisons

- Used two profile datasets to perform CRTM comparisons.
 - ECMWF datasets produced via NWP-SAF (provided by Tom Greenwald/Ralf Bennartz at UWisconsin through Peter Bauer at ECMWF).
- Summer-ocean dataset
 - 24000 profiles
 - Wind speeds range from 0 to ~20ms⁻¹
 - Zenith angles set to vary from 0 to 60°
- Winter-ocean dataset
 - 8703 profiles
 - Wind speeds range from 0 to ~30ms⁻¹
 - Zenith angles set to vary from 0 to 60°
- Computations performed for MetOp-A IASI band 1 I'll only show results for the 800-1000cm⁻¹ longwave window region.
 - Nalli minus Wu-Smith should yield +ve differences, especially at larger angles.
- For Nalli model, used the Ebuchi-Kizu PDF and both the Hale-Querry and Wieliczka refractive index data sets.

CRTM ΔT_B comparisons Stats for all θ_z and v_z ; Hale-Querry RefIndex

CRTM ΔT_B comparisons Stats for all θ_2 and v_3 ; Wieliczka RefIndex

50°

CRTM ΔT_B comparisons

Average $\Delta T_B(\theta_z)$ surface; Hale-Querry RefIndex

²nd Workshop on Remote Sensing and Modeling of Surface Properties 9-11 June 2009, Météo France, Toulouse, France

MS

$\Box I I I I \Box I_R$ companyons Stats for all v , and $\theta_{z}=50^{\circ}$; Hale-Querry RefIndex

CRTM ΔT_B comparisons

Average $\Delta T_B(\theta_z)$ surface; Wieliczka RefIndex

²nd Workshop on Remote Sensing and Modeling of Surface Properties 9-11 June 2009, Météo France, Toulouse, France

Stats for all v , and $\theta_z = 50^\circ$; Wieliczka RefIndex

MetOp-A IASI channel 519 RadStat scan angle averages 2009031800 to 2009031906 Control Test

- Scan angle differences. Control = Wu-Smith model; Test = Nalli(HQ) model.
- Ch490 is 849.75cm⁻¹; Ch519 is 900.0cm⁻¹.
- 100000+ observations.
- The Obs-Calc Δ T_B decrease at higher scan angles indicates the higher effective emissivity of the Nalli model is indeed compensating for the reflected downwelling radiance.
- Bias correction is for control in both runs.

GSI Obs-Calc ΔT_B comparisons IASI 1766 channel subset; Impact of RefIndex

MetOp-A IASI channel 519 RadStat scan angle averages 2009031800 to 2009031906 Control Test

- Scan angle differences. Control = Nalli(HQ) model; Test = Nalli(W) model.
- Ch490 is 849.75cm-1; Ch519 is 900.0cm-1.
- 100000+ observations.
- The Obs-Calc ΔT_B difference is small, but noticeable.
- Bias correction is for Wu-Smith model in both runs.

Summary

- Emissivity differences between Wu-Smith and Nalli models are quite significant in the longwave window.
 - Differences are at the 1% level for higher angles and wind speeds.
- Computed IASI brightness temperature difference statistics (average and sdev) for test profile sets can get to 0.2K for IR longwave window.
- Impact on IASI obs-calc statistics in the GSI is of the same order for the high scan angle FOVs.
- Current implementation of IRSSEMs in the CRTM is not ideal.
 - In particular, linear interpolation introduces artifacts.

Further work

- Improve the interpolation scheme in the IRSSEM.
 - Other CRTM LUT interpolations use an averaged quadratic scheme to preserve derivatives across LUT hingepoints.
 - Will implement that module in the IRSSEM.
- Better characterisation of the impact of refractive index data sets.
 - Currently, the differences are overwhelmed by the interpolation differences due to the varying spectral resolutions of the datasets.
 - Maybe pre-interpolate the RI datasets before computing the effective emissivities?
- Characterise the impact of wave slope PDF model.
- Impact of IRSSEM methodology when using a BRDF model.
 - Yong Han (NESDIS/STAR) has implemented an infrared sea surface BRDF model to handle sun glint in solar-affected IR channels.
 - Will use this throughout the IR spectral region to consistently model the surface reflection for multiple downwelling streams (e.g. aerosol-laden atmospheres)