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Build Land DA capability at NILU:

Match expertise between NILU and other groups (Met.no, Meteo-France):
Strong national/international collaboration on:

Theory; Application to land surface; Operational implementation

- Theory: NERSC (Norway), LMD (France)

- NWP: Met.no, Meteo-France; HIRLAM/ALADIN

- Earth System: Land surface (MU, USA); biosphere (U. Jena, Germany); interaction
with atmosphere (several groups)

- Observations: SMOS (Y. Kerr); GlobSNOW (led by Finland); land surface satellite
(several groups)
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Land DA goals:

(1) Build DA algorithms for the land surface: e.g. hybrid, based on ensemble
Kalman filter/particle filter, EnKF/PF (complementary methods) - focus
is land forecasting;

(1) Assimilate variables, focus on EnKF (but other algorithms will be tested/
developed, e.g., EKF, extended Kalman filter): land soil temperature (LST,
or associated variable), soil moisture, snow (or associated variable);

(1) Use DA to produce analyses, evaluate observations & models (e.qg.
SURFEX land surface parameters if appropriate) & DA algorithms
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Issues in land DA:

‘Observed quantities often non-linearly related to model variables

Abilities of different DA assimilation algorithms to handle non-linear
observation operators need to be compared/evaluated;

*Most observations for land DA concerned with surface/near-surface
conditions - important model variables represent more deep soil conditions
(e.g. deep soil moisture)

Abilities of different DA methods to solve inverse problems must be
compared/evaluated;



ualls

N I LU Norwegian Institute for Air Research

Issues in land DA (continued):

-Satellite data becoming more important for land DA. These data often
have complicated observation error structures (biases, spatially correlated
errors)

See ECMWF developments, OI->EKF (Drusch et al., GRL, 2009)

Abilities of different DA methods to handle complicated observation error
structures must be compared/evaluated. Interaction between (systematic)
model errors & (systematic) observation errors needs to be handled

properly:

-Atmospheric forcing for land DA may come from models or observations
(e.g. precipitation)

Specification of model error characteristics crucial.

N.B., issues EnKF/PF: non-linearity, non-Gaussianity, error characterization
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Approach:

i.  Theoretical development: compare EnKF/PF (NERSC/Met.no/NILU) +
novel developments (hybrid DA system for land forecasting)

i.  Work with NILU DA system (EnKF) + land model (SURFEX - MF)
from HARMONIE/Met No + satellite observations + novel
developments (errors, biases) - incorporate at NILU

i.  Compare with EKF from MF (received from JF Mahfouf & compiled
Met.No, ongoing NILU)

i.  Consultation with Met.No & MF in future developments with land DA
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Outcomes:
i.  Improved land DA systems (e.g. hybrid EnKF/PF)
i.  Evaluation of land DA systems (EnKF, EKF,..)
i.  Understanding land/atmos interactions (feedbacks)
i.  Improved use of EO (satellite data; error characterization)

i.  Improved forecast & modelling capability (Better use of EO; better
error characterization, model + observations: NWP)

i.  Studies of land/atmosphere system (analyses)
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Land model:
SURFEX: Implementation at NILU

Collaboration with Met.No & Météo-France

% Using latest version (v4.8) of f-line SURFEX model from Meteo-
France (Giard and Bazile 2000; Le Moigne 2005;...)

+ EKF from Meteo-France (Mahfouf et al. , JGR, 2009)
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SURFEX model data flow (no DA) - schematic

Atmospheric
data

HIRLAMA4
GRIB files . FORCING.nc

SURFEX . SURFOUT.txt

»

OFFLINE

PARAMS.nc
Land data base . OPTIONS.nam .
Final model state

LST data

Model
parameters

Copy to prep.txt
PGD PGD.txt PREP PREP.txt B3 to run for next

time period

Physiographic data: Initial model state
program in SURFEX
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Observations

% Plans for satellite observations of land surface temperature
(LST, or related variable), snow cover (or related variable) &
soil moisture (+ errors):

* LST from EOS TERRA/MODIS and AQUA/MODIS
satellites, 1 km spatial resolution: GENESI-DR application

= Snow cover from same satellites with 500 m resolution

= Soil moisture from EOS AQUA/AMSR-E with 25 km
resolution

* Focus on Scandinavia and specific periods (e.g. Aug 2007)

= Soil moisture from SMOS
= EUMETCAST (available at NILU) - SEVIRI, MODIS,...

% Also interested in SYNOP observations (T,,, RH,,)
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From S. Briggs, ESA
Two more Explorers set for launch in 2009

% November
SMOS (Soil Moisture CryoSat, ESA’s ice

and Ocean Salinity), and snow mission
ESA’s water mission




Europe, North Afnca, South Africa,
South America 3 HDF5

Europe, Morth Africa, South Africa,

S iy 2 HDF5

Europe, Morth Afnca, South Afnica,
=iy =5 3 HDF5

Europe, Morth Africa, South Africa,

South America 3 HDF5

Europe, Morth Africa, South Africa,

South America 3 HDF5

S SAF Network Workshop
Shide: 14 Darmstadt, 14-16 January 2008




ualls

N I LU Norwegian Institute for Air Research

DA algorithm:
Two recent EnKF versions, implemented at NILU
* Sakov and Oke: MWR, 2008

*  An Ensemble Square Root filter (ESRF) using a symmetric
Ensemble Transform Matrix (ETM): classical KF - ensemble mean.
Prevents build up of ensemble outliers

* Sakov and Oke: Tellus, 2008

* A Deterministic Ensemble Kalman Filter (DEnKF) using a linear
approximation to the Ensemble Square Root Filter (ESRF) update
matrix. Better for avoiding ensemble collapse. Use of localization

schemes.
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DA code:

Build on EKF architecture/code (Mahfouf)
* Ensemble Square Root filter & Deterministic EnKF (Sakov & Oke)

= 1-D vertical DA initially for each grid cell (see EKF for MF)
mainly 1-D processes in land

= 3-D assimilation later

* Fortran 90, BLAS (Basic Linear Algebra Subprograms) & LAPACK
libraries

= Code general with matrix-free versions of observation operators
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SURFEX EnKF cobEe

* New run script: run_enkf.sh

* New main program: enkfassim.f90
* New makefile: Makefile.SURFEX.mk
* New namelist file: OPTIONS.nam

* QOtherwise identical to the SURFEX-EKF system
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SURFEX EnKF cobEe

5 options for DA: (0) no DA; (1) EnsRKF; (2) DEnsKF; (3) SIR; (4) RPF
(1)-(2): EnKF: (3)-(4): PF

3 Observation types: screen level temp (T, ). screen level RH (RH,,):

superficial soil moisture content (SWI) - initially use retrieved quantities -
later, investigate use of radiances

Prognostic variables: TG1 (surface temp), TG2 (mean surface temp). W61
(superficial volumetric water content); W62 (mean volumetric water content in
root-zone) - see EKF developments for SURFEX

- All can be control variables

Soil patches option: heterogeneous land surface



Flowchart of SURFEX-EnKF
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PLANS:

= Compare EKF & EnKF (also various variants)
* Evaluate SURFEX model/observations using DA
* Land surface analyses - land-atmos interaction studies

* Compare/evaluate various variants of EnKF & PF: toward a hybrid
system for land forecasting

* Later for DA system: Add features: e.g. more sophisticated
observation errors (Verhoest,...): bias correction (Houser):....
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*Test & build DA algorithms (theory)
-Confront models with observations (ideas from NWP)
Exciting & important problem theoretically & scientifically

‘Interest to DA theory

Innovative DA algorithms

Interest to NWP (recall comments from F. Bouttier & S. English)

‘Better use of observations affected by the land
‘Better initial conditions for 2-week to seasonal forecasts

‘Interest to climate modellers

‘Better land surface schemes

‘Better climate models

‘Better set up/design of experiments

Better understanding of performance of climate models

*General interest to land/atmosphere scientists: atmosphere-land processes
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Visits to NILU/workshops
W'shops (June 2009, Meteo-France):
2" workshop Remote sensing & modelling of surface properties
*1st meeting Expert team surface processes
COST Action 0804: "Advancing the integrated monitoring of trace gas exchange
between biosphere and atmosphere”; 2009-2013 - WAL in MC

Upscaling between local measurements & global measurements: heterogeneity



atls From Paul Houser:

NILU Norweg :"-'7""3_:5“‘."
Land Surface Data AssimilatioE: Progress and Realities )

Current Status:

*Soil moisture, skin temperature, and snow assimilation have been demonstrated.
‘ .~ Dat

*Evapotranspiration, runoff, groundwater (gravity), and carbon assimilation are underway

ata Assimilation Tradeoffs:

*Tradeoff between using complex data assimilation techniques, the ability to use all the available data and
- operational needs and realities due to the large computational burdens.

*Tradeoff in dimensionality of data assimilation methods —need may depend on scale.

*[radeoff between fine resolution and large area implementation.

Surface Data Assimilation Realities

* *We need to pay attention to the consequences of assimilation, not ]USt the opt|mum assimilation technique. i.e.
L does the model do silly things as a result of assimilation, as in snow assimilation example.
. *Land model physics can be biased, leading to incorrect fluxes, given correct states.
*Most land observations are only available at the surface, meaning that biased differences in surface
obs ons and predictions can be improperly propagated-to-de
+Assimilation does not always make everythmg in the model better._l¢

bon ok el Paul R. Houser, 14 March 2007, Page 34



ualll,
N I LU Norwegian Institute for Air

Example: TERRA-MODIS LST: 1 August 2007, 7.30 am UTC

Lard surface Temperature (K)
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Equations

Sakov and Oke: MWR, 2008

= An Ensemble Square Root filter (ESRF) using a symmetric Ensemble
Transform Matrix (ETM): classical KF - ensemble mean

| N
X' = Ez Xif Forecast ensemble & mean
i=1
A = ‘:Alf, : AEJ:' = [Xf -x' . Xi -xf] Forecast anomalies
£ I vt ofuf  ofNT 1 f A fT
P = Z(Xi -x )X -x ) = AA Forecast error

N-1{5 l N-1
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x' =x +K(y-Hx")

K=PH (HP'H" +R)’ Analysis step in KF eqns
for ensemble mean
P' =1 - KH)P'



ualls

N I LU Norwegian Institute for Air Research

A = AT Update: analysis anomalies

-1/2
T= [I + ;(HAf )T R’ (HAf )} Transformation matrix

(several choices)

I+ 1 (HAT) R'(HAT) = VAV

_ w7 A -12%,T Singular value decomposition with V
T=VA YV o S
orthonormal and A diagonal with
eigenvalues
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X = [Xf X;] = [&; XL AL T x“] Analysis ensemble
S Mean . 1 &, .
ZAI- =0 oreserving T — X' = GZ{Xi Analysis ensemble mean
1 :
P’ X -xH)XT -x")' = ——A"AY Analysis error
N 1; N-1

Kalman filter equations exactly solved for the ensemble mean
Note: No perturbations of observations

Importance of mean-preserving feature: improved performance

-> prevents build-up of ensemble outliers
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Equations

Sakov and Oke: Tellus, 2008

= A Deterministic Ensemble Kalman Filter (DEnKF) using a linear
approximation to the Ensemble Square Root Filter (ESRF) update
matrix. Better for avoiding ensemble collapse. Use of localization

schemes

Forecast ensemble & mean

HMZ

1
N &

Al = I:A]f,,...,, A;] = I:le - ij...j X; - Xf] Forecast anomalies

P’ = —Z(Xf -x' )(Xi -x' )T = —_AiAfT Forecast error
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A'=A" -

I

x' =x +K(y - Hx') KF analysis
K=P'H'(HP'H" +R)" KF gain
1 N Update: analysis anomalies
EKHA =al KH <«1 (“small”)

1
2

-1

(HAf )T (HPfHT + R) (HAf ] Transformation matrix

N-1

M =HP'H" + R = VAV’

}..I—l — (HPfHT 4 R)—l — VA_lVT

(several choices)

Singular value
decomposition with
V orthonormal and
A diagonal with
eigenvalues
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X? = [XT:---:' X;] - [4; +x",., AL+ K“] Analysis ensemble

N l N
ZA? =0 X' = —ZX: Analysis mean
1=1 l N1'=1
l - 1 a gal .
P* = —Z(‘{“ x)(X* -x")" = ——A*A"  Analysis errors

N—'.11. N_l
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See eqn to update forecast anomalies

Increased ensemble

' tf
P* =(I - KH)P! +iKHPfHTKT spread

(AT Mo (EAT) | [ (AT (maT) |

T=1-— ~|1-
2 N-1 N-1

| |

First two terms 1n Taylor approximation of this

- M = HPFHT + R — VAVT Singular v.ahle |
B. : ‘ decomposition with
V orthonormal and
A diagonal with
eigenvalues

M™ = HPH™ + R)" = VAV
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Advantages of EnKF vs EKF (1)

e Some major problems associated with using the EKF in connection
with (larger) nonlinear models:

* Inaccuracy in the evolution of the model error covariance matrix and huge
computational requirements associated with the storage and forward
integration of this matrix

» Use of the central forecast as the estimate of the state. For non-linear
dynamics the central forecast is not equal to the mean or expected value

e The EnKF was designed to resolve the points above. It has gained in
popularity due to its simple conceptual framework and relative
ease of implementation
e Noderivation of a tangent linear operator  (Cf 4D-Var)

* Model error covariance implicitly defined through maintaining a set of model
states in the form of an ensemble

* The mean of the ensemble representing the estimated state



Advantages of EnKF vs EKF (2)
L/ See later

In EnKFs (and particle filters) each ensemble member is run
forward in time through the model

Uncertainty (or spread in the ensemble) is introduced by stochastic
model dynamics (stochastic physics) when integrating each
ensemble member forward in time

In the EKF uncertainty in the estimated state is introduced in the
update of the B-matrix (background error covariance) and in the

added Q-matrix (Model error)

However, both are optimal and correct strictly speaking only when
the underlying PDFs (prior and posterior to the observations) are
Gaussian



Particle filter versions at NILU

e |mportance Sampling and Resampling Particle Filter (SIR)
e Auxiliary SIR Particle Filter (ASIR)

 Regularized Particle Filter (RPF)

» Ristic et al.: “Beyond the Kalman Filter. Particle filters for tracking
applications”, Artech House, Boston, 2004

These are included in the same Fortran module ensemble_m.f90 as the two
ensemble Kalman filters (and copied into the enkfassim.f90 code).



Advantages of particle filters

e A particle filter can handle PDFs which can be quite different from
Gaussian, e.g. skewed, heavy-tailed, bi-modal, multi-modal etc.

* However, in order to take advantage of this often a very large
ensemble is needed ; also need resampling to avoid skewed particle distribution

e But another nice feature of particle filters is that they do not alter
model physics, only reassigns the probabilities of model states

NOTE:

e |nall ensemble based methods, EnKFs, particle filters, the ensemble
should capture the true state well, ideally through the mean, and
should also describe well the uncertainty of the true state via the
spread of the ensemble
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SUMMARY:

PF/EnKF represent 2 main groups of ensemble DA methods. Each of
them has advantages & limitations.

PF can handle arbitrary probability distributions & non-linearity, but
may require excessive resources for high-dimensional problems.

EnKF is more suitable for high-dimensional problems, but should not be
used in strongly non-linear/non-Gaussian systems.

Complementarity of EnKF & PF makes a hybrid version highly attractive
for non-linear/non-Gaussian systems, e.g., land surface.

Collaboration between NERSC/Met.no/NILU
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&NAM 10 ENKFASSIM LPRT associated with perturbation (random draw)

of each control variable in order to create new

LPRT = F,

LPRE= F ensemble members.

LSIM = F LPRF associated with perturbation of forcing data

/ in order to create new ensemble members.
Currently this option is not used.
LSIM is used to read and write model variables and
simulated observations as in the SURFEX-EKF
version.

&NAM_VAR Currently the EnKF runs with the two-layer

IVAR =1, version of the ISBA scheme. It means that the

)TJﬁFT_M(l) == 'l\ivez', confcrol variabl_es can be .the four main prognostic

XVAR_M(2) ='WG?/ variables of this scheme:

XVAR_M(3) ='TG2,

XVAR_M(4) ='TG1', The surface temperature T, (TG1), the mean
surface temperature T, (TG2), the superficial

TPRT _M(1) =0.1, volumetric water content w, (WG1), and the

$EE$ m%; _ 8%’ mean volumetric water content in the root-zone

TPRT_M(4) =0.1, w, (WG2).

INCV(1) =1,

INCV(2) =1, TPRT is the standard deviation of Gaussian

INCV(3) =0, random variables for perturbation of the

I/NCVM) =0 logarithm of each control variable (mean values

assumed to be zero).
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/
&NAM_OBS Regarding the observations, three observation
NOBSTYPE =3, types are considered:
YERROBS(1) = 1.0,
YERROBS(2) = 0.1, Screen level temperature, relative humidity and
YERROBS(3) = 0.4 superficial soil moisture content.
INCO(1 =1,
INCO§2; -1 Like for the control variables, the elements of the
T array INCO control which type of cbservation one
INCO(3) =1 wants to assimilate.
/
IENS is currently not used. It may be used in the future to
&NAM_ENKF operate on a single ensemble member
[ENS =1,
NENS =1, NENS denotes the number of ensemble members
ENKFM =1
/ ENKFM denotes the type of ensemble method:

1: Ensemble square-root Kalman filter: ENSRKF

2: Deterministic ensemble Kalman filter: DENSKF

3: Importance sampling and resampling particle filter: SIR
4: Regularized particle filter: RPF

All ensemble data assimilation methods are based on BLAS, Sparse BLAS and
LAPACK subroutine libraries. Generation of pseudo random numbers based on
subroutines using the Mersenne Twister RNG.
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