Land Surface Emissivity for Precipitation Retrieval in the GPM-era

Ralph Ferraro NOAA/NESDIS Camp Springs, MD USA

PMM Science Team Land Surface Characterization Working Group:

AND

S. Boukabara, S. Finn, K. Gopalan, G. Huffman, B. Johnson, C. Kidd, C. Kummerow, C. Liu, G. Liu, C. Peters-Lidard, L. Li, G. Petty, G. Skofronick-Jackson, D. Staelin, A. Sudradjat, J. Turk, J. Wang., N. Wang, F. Weng, E. Wood

Motivation for this talk...

 We need accurate emissivity retrievals to improve the development of physically based precipitation retrievals over land

 Initiate collaborations between IPWG and ITWG

Outline

- Scientific need
- What we have and what we don't have
- PMM Science Team emissivity experiment
 - What we are doing
 - Preliminary results
- Summary and next steps

3

Surface Variations

AMSR-E sequence of 18V-18H:

- Active period of rainfall
- Surface vegetation/crops emerging
- •Polarization differences (related to soil moisture and vegetation cover) are dynamically varying
 - Poses challenge to E retrievals and precipitation retrieval

9-11 June 2009

2009 Znd workshop on Remote Sensing & wodeling of Sufface Properties - Toulouse, France

Scientific Need*

*From PMM Science Team Meeting, July 2008

- Improved surface characterization is urgently needed to advance the GPM-era precipitation over land algorithms
- PMM algorithm scientists focusing on a wide range of topics, but not necessarily on land surface characterization
 - Land/winter season precipitation microphysics
 - Radiative transfer in precipitating atmospheres
 - Benefits/Utilization of high frequency measurements
- However, much expertise is available through other programs
 - GEWEX
 - JCSDA/CRTM
 - CGMS ITWG (+Emissivity Workshops), IPWG
 - However, it is not as simple as "plug and play"

LSWG Objectives and Goals *

*From PMM Science Team Meeting, July 2008

- Assess the current state of land surface emissivity models/retrievals
 - Must be applicable to all GPM sensors
 - 6 200 GHz
 - What happens during active precipitation (if using static data base)?
 - Engage experts external to PMM
- Establish methodology to accurately characterize the land surface for GPM core and constellations sensors
 - Must consider sensor and orbital characteristics
 - Frequency/FOV
 - Sensitivity to surface
 - Must be both static and dynamic in nature
 - Static Land/Water/Terrain/E Climatology
 - Dynamic snow cover, Tsfc, E, changing water boundaries (e.g., Aral Sea)

How we can use E information

Sensitivity on Retrievals

Results courtesy of B. Johnson/G. Skofronick-Jackson

89V TB difference (K): ε=0.90 - ε=0.85

- Examination of lake effect snow bands from C₃VP
- Impacts of incorrect emissivity
 - 5-10 K @89 GHz
 - 1 3 K @ 183+<u>7</u> GHz
- This translates up to 100% error in retrieved snowfall rates (0-2 mm/ hr)

8

9-11 June 2009

Study Parameters

- 12 Targets/9 types of surfaces
- 1 Year: 1 July 06 30 June 07
- Assemble data sets:
 - Satellite
 - AMSR-E, SSMI, SSMIS, TMI, AMSU, WindSat
 - Ancillary satellite
 - ISCCP, PR/VIRS, CloudSat
 - Model
 - GDAS, LSM, JCSDA Emissivity
- Participants generate emissivity "their way" but:
 - Must use only the data sets supplied
 - Make results freely accessible by others (post on web)
- Results to be stratified by site, cloud mask, etc.

9

Study Domain

•C3VP – 44 N, 80 W •Amazon(2) – 7 S, 70 W and 2 N, 55 W •Open Ocean(3) – 0 N, 150 W; 35 N, 30 W; 45 S, 35 W •Desert – 22 N, 29 E •SGP – 35 N, 97 W •Inland Water – 48 N, 87 W •SE US (HMT-E) - 34 N, 81 W •Wetland surface - 18 S, 57 W •Finland – 60 N, 25 E

Study Web Page http://cics.umd.edu/~rferraro/LSWG.html

This is the web page for the PMM Science Team Land Surface Characterization Working Group (LSWG). Details of the study are found here <u>LSWG Study Summary.</u> Meeting minutes from April 28, 2009 are found here <u>Latest Meeting Minutes.</u>

For more information, please contact Ralph Ferraro

Data Type	Readme	ASCII Data	Comments	Focal Point
GDAS	GDAS Readme	GDAS data	1 Degree Data	Fuzhong Weng
Emissivity Model				Fuzhong Weng
LSM Input	LSM Readme	LSM data	GLDAS 1 deg, 3 hr, using 4 LSMS: NOAH, CLM, VIC, MOSAIC	Christa Peters-Lidard
ISSCP Cloud Mask	ISCCP Readme	ISCCP Data	Data Set is compressed	Chuntao Liu
Colocated TMI, PR and VIRS	<u>TMI/PR/VIRS Readme</u>	<u>TMI/PR/VIRS data</u>	VIRS cloud mask with colocated TMI; Data Set is compressed	<u>Chuntao Liu</u>
AMSR-E	<u>AMSR-E Readme</u>	<u>Jul06 Aug06 Sep06</u>	AMSR-E, TMI, SSMI and SSMIS data sets are combined into monthly files	<u>Sarah Finn</u>
SSMI	<u>SSMI Readme</u>	Oct06 Nov06 Dec06	AMSR-E,TMI, SSMI and SSMIS data sets are combined into monthly files	<u>Sarah Finn</u>
SSMIS	<u>SSMIS Readme</u>	<u>Jan07 Feb07 Mar07</u>	AMSR-E, TMI, SSMI and SSMIS data sets are combined into monthly files	<u>Sarah Finn</u>
TMI	<u>TMI Readme</u>	<u>Apr07 May07 Jun07</u>	AMSR-E, TMI, SSMI and SSMIS data sets are combined into monthly files	<u>Sarah Finn</u>
CloudSat	CloudSat Readme	<u>CloudSat Data</u>	Data Set is compressed	Guosheng Liu
L	1			

Preliminary Results

- MIRS 1DVAR (Boukabara)
 AMSU, AMSR-E, SSMIS
- CICS Direct computation remove atmosphere (Wang)
 – AMSR-E, TMI
- NASA Direct computation knowing surface type and atmosphere (Skofronick-Jackson) – AMSU
- NRL Direct computation (Li)
 WindSat

MIRS Results – AMSR-E

Results courtesy of S. Boukabara/W. Chen

•6.9V: relatively small interannual Variability EXCEPT:

- •Finland in winter
- •C3VP in winter
- SGP due to vegetation/lack of it
- •Wetlands in fall

•89V: highly variable for most sites

2nd Workshop on Remote Sensing & Modeling of Surface Properties - Toulouse, France 13 9-11 June 2009

MIRS Results – AMSU vs. AMSR-E

Results courtesy of S. Boukabara/W. Chen

- •AMSR-E ~50 deg incidence angle, AMSU shown here between 40-60 deg.
- AMSU is also mixed polarization
- Only 5 targets of AMSU data were made available to date
- •Similarities:

•Large annual cycle changes at C3VP and wetland (and magnitudes)

- Finland is clearer lower than other targets
- Differences:

Water targets (mixed polarization?)

- •37 GHz or less
 - •Reasonable stability of C over vegetated target
 - Cloud affects minimal
- •89 GHz
 - Cloud and precipitation affects dramatic
 - Similar values during clear conditions

MIRS vs. CICS - Amazon

Results courtesy of S. Boukabara/W. Chen

Very limited data to compare at this time....
Seems like reasonable agreement in ranges of values – clear sky

NASA – AMSU-B at C3VP

Results courtesy of J. Wang/G. Skofronick-Jackson

ulouse, France 17

MIRS vs. NASA – C3VP @ 157 GHz

2nd Workshop on Remote Sensing & Modeling of Surface Properties - Toulouse, France 18 9-11 June 2009

Summary and Future

- The advancement of precipitation over land in GPM-era must consider
 - Accurate surface characterization 6 200 GHz
 - Understanding of the sensitivity of the retrievals over all surface types and frequency range
- PMM Science Team just starting in this area with a very simple intercomparison study
 - Preliminary findings very interesting and perhaps encouraging
- Future
 - We need your help!
 - PMM emissivity workshop with ITWG interested parties?
 - Learn more at PMM Science Team Meeting, Salt Lake City, UT, USA, October 2009
 - ITWG engagement at next IPWG
 - Hamburg, Germany in fall of 2010?

Methodology

 Emissivities inferred from passive microwave observed Tb and clear sky* computations

$$\varepsilon = (T_{obs} - T_{up} - e^{-\tau} T_{down}) / e^{-\tau} (t_s - T_{down})$$

- where ε is the inferred surface emissivity
- $-T_{obs}$ is the observed Tb and t_s is the surface temperature
- T_{up} (T_{down}) is the upwelling (downwelling) emission from the atmosphere
- τ is the opacity of the atmosphere
- * Assumes no cloud for all RTM calculations

Retrieved Emissivity -> forward model cf. observed TBs AMSU-B Overpass at 11:31 UTC

Figures from Gail Jackson (GSFC) Jim Wang (GSFC), and Anne Kramer (UMBC)

89 GHZ Observed – Simulated Using CARE-derived TPW [looks decent, but still issues] [TB diff. range: -1 to +9 K]

89 GHZ Observed – Simulated Using GOES-derived TPW [simulated TBs a bit too cold] [TB diff. range: 0 to +10 Ks]

2nd Workshop on Remote Sensing & Modeling of Sugradian Properties - Toulouse, France 9-11 June 2009

