

Land Surface Emissivity Characterizations for CRTM Applications

Fuzhong Weng NOAA/NESDIS/Center for Satellite Applications and Research and Joint Center for Satellite Data Assimilation

The 2nd Workshop on Remote Sensing and Modeling of Surface Properties, Toulouse, France, June 8-11, 2009

Community Radiative Transfer Model

Support over 100 Sensors

- GOES-R ABI
- Metop IASI/HIRS/AVHRR/AMSU/M
- TIROS-N to NOAA-18 AVHRR
- TIROS-N to NOAA-18 HIRS
- GOES-8 to 13 Imager channels
- GOES-8 to 13 sounder channel 08-13
- Terra/Aqua MODIS Channel 1-10
- MSG SEVIRI
- Aqua AIRS, AMSR-E, AMSU-A, HSB
- NOAA-15 to 18 AMSU-A
- NOAA-15 to 17 AMSU-B
- NOAA-18/19 MHS
- TIROS-N to NOAA-14 MSU
- DMSP F13 to15 SSM/I
- DMSP F13,15 SSM/T1
- DMSP F14,15 SSM/T2
- DMSP F16-20 SSMIS
- Coriolis Windsat
- TiROS-NOAA-14 SSU
- FY-3 IRAS, MWTS, MWHS, MWRI
- NPP/NPOESS CrIS/ATMS

Community Radiative Transfer Model (CRTM)

"Technology transfer made possible by CRTM is a shining example for collaboration among the JCSDA Partners and other organizations, and has been instrumental in the JCSDA success in accelerating uses of new satellite data in operations" – Dr. Louis Uccellini, Director of National Centers for Environmental Prediction

Acknowledgements

CRTM Members:	Organi
Fuzhong Weng	STAR
Yong Han	STAR
Paul van Delst	NCEP
Ben Ruston	NRL
Ping Yang	Texas A
Ralf Bennarts	Univ W
Jean-Luc Moncet	AER
Quanhua (Mark) Liu	Perot S
Banghua Yan	Perot Sy
Yong Chen	CIRA
David Groff	NCEP
Ron Vogel	IMSG
Jun Li	CIMSS
Tim Schmit	STAR
Tom Greenwalt	CIMSS
Alan Huang	CIMSS

ization A&M Visconsin System ystem S

Areas of Expertise_

CRTM technical oversight/emissivity CRTM interface with NESDIS -CoChchair CRTM interface with NCEP -CoChair CRTM interface with NRL Cloud/aerosol scattering LUT Transfer scheme Absorption model Transfer scheme Surface emissivity validation/absorption model transmittance data base IR surface emissivity

ABI retrieval algorithm CRTM assessment SOI GOES-R proxy data

CRTM Recent Accomplishments

- Upgrade the LUT for scattering from clouds and Aerosols
- Including gas absorption due to Zeeman splitting effects
- Correction of ocean microwave emissivity through tuning large scale roughness parameters
- Gas absorption model for historical sensors in OPTRAN
- Validation of CRTM using Cloudsat data matched satellite
- Upgrade MHS snow and sea ice emissivity
- Upgrade microwave desert emissivity
- New considerations in LBL data base
- Multiple transmittance interface including variable trace gases
- New considerations on infrared land infrared emissivity properties

CRTM Fast Gaseous Absorption Models

Version 1 performance: Variable gases: H2O, O3 Fixed gas: CO2, CO, CH4, N2O, O2 Version 2 performance Variable gases: CO2, H2O, O3 Fixed gas: CO, CH4, N2O, O2, CFCs and others

Efficiency comparison between CRTM ODPS (version 2) and Compact-OPTRAN (Version 1)

Satellite Sensor	Forward Model		K-Matrix Model	
	ODPS	Compact-OPTRAN	ODPS	Compact-OPTRAN
avhrr3_n18*	0m10.12s	0m22.02s	0m49.43s	0m57.58s
hirs4_n18*	0m37.40s	2m13.32s	2m41.37s	4m11.99s
amsua_n18*	0m23.69s	1m29.70s	1m37.38s	2m59.44s
iasiB1_metop-a [#]	0m38.70s	2m31.69s	2m44.84s	4m30.27s
iasiB2_metop-a [#]	1m0.41s	3m33.24s	4m4.27s	6m25.05s
iasiB3_metop-a [#]	0m53.00s	3m12.81s	3m42.78s	5m51.30s

Satellite Sensor	Tangent Linear Model		Adjoint Model	
	ODPS	Compact-OPTRAN	ODPS	Compact-OPTRAN
avhrr3_n18	0m39.67s	0m53.79s	0m42.15s	0m55.14s
hirs4_n18	1m28.29s	3m39.11s	1m34.40s	3m42.18s
amsua_n18	1m3.11s	2m34.89s	1m8.77s	2m35.65s
iasiB1_metop-a	1m7.50s	3m43.84s	1m14.44s	3m45.89s
iasiB2_metop-a	1m45.91s	5m16.16s	1m54.56s	5m18.10s
iasiB3_metop-a	1m28.31s	4m45.37s	1m38.17s	4m48.63s

All sensors were run with UMBC 48 profiles at nadir, and full channels.

* repeat 1000 times; * repeat 10 times. Notice the new version is about 2-5 times faster

Data, and Information Service Location S

- Update to MT_CKD water vapor continuum in microwave
 - Based on ARM ground-based radiometer data
 - Preliminary numbers for changes:
 - -10 % decrease in foreign
 - ≁~20 % increase in self
- Additional features:
 - Extension beyond microwave region
 - Improved consistency with LBLRTM in terms of coding and databases

Improvement of Infrared LBL Data Base

<u>LBLRTM</u>

CO₂ line parameters Tashkun et al. (1999) CO₂ line coupling Application of Niro et al. (2005) code to Tashkun line parameters CO₂ continuum Using ARM ground-based interferometer meas. H₂O line parameters Coudert et al. (2008) Updates to LBLRTM are all independent of the AIRS dataset used here to demonstrate them. MONORTM remp.

H₂O continuum

Using ARM ground-based radiometer meas. (Payne et al., 2009, in preparation)

Updates to spectroscopy in AER's line-by-line RT models

Significant improvements to consistency between spectral regions!

Modeling Stratospheric Sounding Unit (SSU)

- Stratospheric Sounding Unit data is a three-channel sensor onboard
- NOAA series satellites (started from TIROS-N in 1978 and ended at NOAA-14 in 2006)
- The data in past 29 years is unique for middle and upper tratospheric temperatures
- Using CO2 cell pressure modulation onboard satellite, the single CO2 15 µm is split into 3 channels and shifted up to middle an upper stratosphere.
- In absent of a fast and accurate transmittance model, the SSU data has not used in NCEP analysis and reanalysis.

Comparisons between observation and modeling

The peaks of the SSU weighting function approximately locate at 15, 5, and 1.5 hPa. The simulated BT bias at channels 1 and 2 could be caused by a cold bias in stratosphere in the NCEP analysis.

The large scatters for channel 3 is partly due to the limited top height (~ 0.2 hPa) in analysis.

Fast Zeeman Absorption Model

- (1) Atmosphere is vertically divided into N fixed pressure layers from 0.000076 mb (about 110km) to 200 mb. (currently N=100, each layer about 1km thick).
- (2) The Earth's magnetic field is assumed constant vertically
- (3) For each layer, the following regression is applied to derive channel optical depth with a left-circular polarization:

$$\tau_i = \tau_{i-1} \exp(-OD_{lc,i} / COS(\theta)), \quad \tau_0 = 1$$

$$OD_{lc,i} = c_{i,0} + \sum_{j=1}^{m} c_{i,j} x_{i,j}$$

- Ψ 300/T; T temperature
- B Earth magnetic field strength
- $\theta_{\rm B}$ angle between magnetic field and propagation direction

From Han, 2006, 15th ITSC

SSMIS UAS Simulated vs. Observed

AMSU-A channel-14 brightness temperature differences between RT models w/o Zeeman-splitting effect

Model inputs:

B_e, θ_e, $Φ_e$ – calculated using IGRF10 and data from AMSU-A MetOp-a 1B data files on September 8, 2007.

Atmospheric profile – US standard atmosphere applied over all regions.

Descending

Ascending

CRTM Surface Emissivity Module

New Snow Emissivity Model

Figure courtesy of Banghua Yan

Snow Microwave Emissivity Spectra

Snow V-POL Emissivity Spectra

National Environmental Satellite, Data, and Information Service

Sea Ice Microwave Emissivity Spectra

Sea Ice V-POL Emissivity Spectra

Sea Ice H-POL Emissivity Spectra

National Environmental Satellite, Data, and Information Service

Oceanic Emission Model

Phenomenology.

- Large gravity waves, whose wavelengths are long compared with the radiation wavelength.
- Small capillary waves, which are riding on top of the large-scale waves, and whose RMS height is small compared with radiation wavelength.
- Sea foam, which arises as a mixture of air and water at the wind roughened ocean surface, and which leads to a general increase in the surface emissivity.

Two-scale Simulations

Aircraft Measurements

New Permittivity Models

• Why: for a low frequency (< 20 GHz), permittivity depends on salinity but CRTM and RTTOV both use FASTEM-3 whose coefficients are derived from Ellison et al. (2003) with a fixed salinity of 35‰.

National Environmental Satellite, Data, and Information Service

> • How: Double Debye Model (Meissner & Wentz, 2004) with a removal of salinity dependence of permittivity at infinite frequency in MW model (a clear conflict with physics) and with a revised fitting coefficients

$$\varepsilon = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_1}{1 + j2\pi f \tau_1} + \frac{\varepsilon_1 - \varepsilon_{\infty}}{1 + j2\pi f \tau_2} + j\frac{\sigma}{2\pi f \varepsilon_0}$$

• Revised Meissner and Wentz permittivity model are valid up to 500 GHz and fits well measurements well

CRTM Infrared Emissivity Data Base over Land

- In general, CRTM baseline version reflectivity (emissivity) is higher (lower) than JPL library
- Lack of seasonal information
- Course surface types
- No angular dependent information
- Some discontinuity

National Environmental Satellite, Data, and Inform and M Simulated Emissivity at 4.3 micron

National Environmental Satellite, Data, and Information Street Version 5 Land Emissivity at 8.3 micron

- Day-night difference is significantly large over desert
- Some angular dependent features
- Large spatial variability over desert

Hyperspectral Emissivity Data Base

- AIRS and IASI 39 hinge point emissivity data are retrieved in AIRS/IASI systems
- Two LSE data sets agree well within 1-3 % for most areas
- Differences exist over coastal areas and desert region where the large variations of emissivity occur

AIRS

Infrared emissivity data sets will result in improved uses of surface sensitive sounding channels from hyperspectral instruments

National Environmental Satellite, Data, and Information Service

Uses of NOAH LSM Surface Types for Surface Emissivity Characterization

FAO/STATSGO Soil Type

Infrared Emissivity vs. Scan Angle

National Environmental Satellite, Data, and Information Steasonal Variation of Infrared **Emissivity over N. Africa**

0.15

0.9

AIRS Emissvity in N. African (Spring 2008)

NOAR

Bedrock

City Loan

- City

AIRS Emissvity in N. African (Fall, 2008)

AIRS Emissvity in N. African (Winter 2008)

National Environmental Satellite, Data, and Inf Constitute of Service Provide Activity Vs. Soil Structure (N. Africa, Jan – Mar 0-12, 2008)

AIRS Desert Emissivity (January-March, 2008)

National Environmental Sciellite, Data, and Informatic Proce r-comparison of CRTM with RTTOV/PFAAST

Jun Li/Tim Schmit

NOAR

Simulated vs observed brightness temperatures using 457 radiosonde profiles

Weighting Functions at GOES-R ABI water vapor-absorbing bands

Profile RMSE Retrieved from ABI by CRTM and RTTOV

TPW Retrieved by CRTM and RTTOV

National Environmental Satellite,

NOAR

Blue: RTTOV, Red: CRTM

Summary

- US Joint center for satellite data assimilation (JCSDA) program has developed a new generation of radiative transfer model (community radiative transfer model, CRTM) for uses in NWP data assimilation system
- Currently, CRTM has been used by JCSDA partners NCEP, NRL, GMAO, NCAR/AFWA, GOES-R Program.
- Version 2 CRTM upgrades include ODPS, MW land emissivity, aerosols, and other advanced algorithms
- Independent assessments of CRTM by CIMSS team show excellent performance for several applications, i.e., ABI and SEVERI retrievals, and NWP applications
- Impacts of CRTM on GFS analysis and other data assimilation systems are positive. Impacts of the emissivity models alone on global 6-7 forecasts are also assessed and significant.
- Infrared emissivity analysis from AIRS retrievals demonstrates large variability depending on surface type, and scan angle, etc. LSE diurnal variability over deserts seem to be too large and unreal.