

Modeling reflectance and transmittance of leaves in the 0.4 - 5.7 µm domain: PROSPECT-VISIR

F. Gerber^{1,2}, R. Marion¹, S. Jacquemoud², A. Olioso³ et S. Fabre⁴

¹ CEA/DASE/Télédétection, Surveillance, Environnement

² IPGP/Géophysique Spatiale et Planétaire

³ INRA/Environnement Méditerranéen et Modélisation des Agrosystèmes

⁴ ONERA/Département d'Optique Théorique et Appliquée

12/06/2009

Applications of vegetation optical properties models

Vegetation species classification on Hawaii (green: native species – red: invasive species) Credits: Carnergie Airbone Observatory

http://cao.stanford.edu/

Outline

Existing work and objectives

The PROSPECT-VISIR model

- USGS & ONERA measurement campaigns
- Design of a new leaf model
- Validation
- Conclusion & future work
 - Scaling up to canopy and top-of-atmosphere levels
 - Inversion using hyperspectral remote sensing data

Existing work and objectives

EXISTING WORK

- VNIR SWIR domain (0.4 2.5 μ m) \Rightarrow widely studied (many data and models)
- MWIR LWIR domain $(2.5 14 \mu m) \Rightarrow$ almost no data, to be exploited!

^{12/06/2009}

Existing work and objectives

EXISTING WORK

- VNIR SWIR domain (0.4 2.5 μ m) \Rightarrow widely studied (many data and models)
- MWIR LWIR domain $(2.5 14 \mu m) \Rightarrow$ almost no data, to be exploited!

OBJECTIVES

Modeling leaf optical properties in the visible-infrared domain for accurate estimation of vegetation water content

→ Need to collect new data:

leaf spectra up to 14 µm + biochemical content

USGS & ONERA datasets 1/2

• 2 EXPERIMENTAL CAMPAIGNS

- USGS (Reston, VA), June 08
- ONERA (Toulouse), July 08
- 2 INDEPENDENT DATASETS
 - Important variability of water content (leaf drying,...)
 - Many leaf species (28)
- BIOPHYSICAL AND RADIOMETRIC MEASUREMENTS
 - 64 directional hemispheric reflectance and transmittance spectra from 0.4 to 14 µm (spectral resolution of 1 nm)
 - 64 associated water and dry matter content (g/cm²)

Nicolet Nexus 670 infrared spectrometer + integrating sphere

USGS & ONERA datasets 2/2

12/06/2009

USGS & ONERA datasets 2/2

Physics basis

2 types of reflection

Reflection and transmission depend on:

- Absorption levels
- Surface and internal leaf structure

(particule size, air spaces,...)

12/06/2009

The PROSPECT radiative transfer model

Modeling of leaf R and T as a function of leaf biochemical content and anatomical structure

- Specular reflection: at the surface of the layer (Fresnel coefficient)
- Volume reflection: combination of multiple reflections between the layers

Jacquemoud, S. & Baret, F. (1990). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 91, 34-75

Limits of the PROSPECT model when absorption is very high (2.9-5.7 μm)

In the present version

- Specular reflection dominates
- But in the data,
 - Volume reflection dominates

- Limits of the PROSPECT model when absorption is very high (2.9-5.7 μm)
 - In the present version
 - Specular reflection dominates
 - But in the data,
 - Volume reflection dominates

- Limits of the PROSPECT model when absorption is very high (2.9-5.7 μm)
 - In the present version
 - Specular reflection dominates
 - But in the data,
 - Volume reflection dominates

Limits of the PROSPECT model when absorption is very high (2.9-5.7 μm)

In the present version

Specular reflection dominates

But in the data,

Volume reflection dominates

→ Need to modify PROSPECT to account for volume reflection at high absorption levels

A new leaf model: PROSPECT-VISIR (0.4 – 5.7 µm)

$$k(\lambda) = \sum_{i} \left(\frac{C_{i}}{N} . k_{i}(\lambda) \right)$$

Absorption of one elementary layer

R and T are functions of N, k, n and n_{surf}

• Equivalent refractive index of the leaf surface $n_{surf}(\lambda)$

<u>Variables</u>

- Water content C_w
- Dry matter content C_m
- Structure parameter *N*

A new leaf model: PROSPECT-VISIR (0.4 – 5.7 µm)

$$k(\lambda) = \sum_{i} \left(\frac{C_{i}}{N} . k_{i}(\lambda) \right)$$

Absorption of one elementary layer

R and T are functions of N, k, n and n_{surf}

- Equivalent refractive index of the leaf surface $n_{surf}(\lambda)$

<u>Variables</u>

- Water content C_w
- Dry matter content C_m
- Structure parameter *N*

PROSPECT-VISIR: validation

Conclusion & future work

Conclusion

- A leaf directionnal-hemispheric reflectance and transmittance model from 0.4 to 5.7 µm has been developed
- The knowledge of leaf spectral signatures in the infrared domain has increased

Next steps

Coupling of PROSPECT – VISIR with 4SAIL (canopy radiative transfer model)

■ Acquisition of hyperspectral images of vegetation in the 3 – 5 µm domain ⇒ field campaign planed at INRA Avignon in June 2009 with an ATIS camera standing on a 20 meters high crane

Validation of the model at the canopy level

A paper in preparation...

Use of the model at the satellite level.....