Towards the use of SSM/I observations over land in the French global and limited-area models

Élisabeth Gérard Fatima Karbou Zahra Sahlaoui Florence Rabier (Météo-France) (Météo-France) (Maroc-Météo) (Météo-France)

2nd Workshop on Remote Sensing and Modeling of Surface Properties Toulouse, 9-11 June 2009

Advancement @ Météo-France What about SSM/I over land ?

Is it possible to assimilate SSM/I data over land ?
 How to account for land in the bias correction ?

- Research in the global model (ARPEGE)
 - On-going experiments during AMMA (Jul-Aug-Sep 2006) to test the dynamic retrieval of emissivities (Karbou et al., 2006)

1st part of the presentation

Surface emissivity is an issue, but skin temperature too !

Research in the limited area model (ALADIN)

- Estimation of T_{skin} for each channel (Karbou et al., 2006)
- Validation with synoptic and radiosonde station T_{2m} data

2nd part of the presentation

Assimilation of SSM/I data over land in the global model ARPEGE

Control CTR: SSM/I over sea only (oper Sep'06)
 Experiment EXP: CTR + SSM/I over land

- Quality control
 - no coastal point, no land point with | lat | > 60°
- Dynamic estimation of surface emissivity
 - 19V/19H emissivities assigned (with a frequency parameterization) to other channels of same polarization
 - 19V/19H discarded from assimilation
- Variational bias correction (VarBC)
 - "eTs" instead of "Ts" as one of the predictors
 - Emissivity taken from dynamic method @19V

Run period: 15 Jul – 14 Sep 2006

Water vapour (TCWV & specific humidity profile) Average over the period 15 Jul-13 Sep'06

Experiment TCWV increments Mean= 0.041 kg.m⁻² (0.2%)

Exp-Ctr TCWV analysis difference Mean= 0.165 kg.m⁻² (0.6%)

Exp-Ctr q analysis difference iso = 0.05 g.kg⁻¹

TCWV evolution over land

Forecast scores wrt synop data forecast-observation North of Africa (lat > 0°)

Forecast scores wrt radiosondes Geopotential (forecast-observation) Difference between EXP and CTR

forecast range

Estimation in ALADIN of T_{skin} retrieved from SSM/I over land

For a plane parallel non scattering atmosphere and a specular surface

$$T_{skin} = \frac{Tb - (T_{\downarrow} \times (1 - \varepsilon_{atlas}) \times \Gamma) - T_{\uparrow}}{\varepsilon_{atlas} \times \Gamma}$$

- T_{skin} retrieved from
- RT model + meteorological fields
- Observation
- Atlas
- ... with their own errors ...

Experimental framework

- Emissivity atlas obtained over a 2-month period (Jun-Jul 2006)
- Screening over a 1¹/₂-month period (1 Aug-15 Sep 2006)
- T_{skin} estimated for each channel
- Comparison to "interpolated" T_{2m} (conventional data averaged within a radius of 0.5° around the satellite observation)

Statistics T_{skin} versus T_{2m}

Instrument- Channel	Bias T _{skin} -T _{2m}	Std T _{skin} -T _{2m}	Correlation (T _{skin} , T _{2m})
SSMI-1 (19V)	-2.05	10.2	0.72
SSMI-2 (19H)	-3.6	17.7	0.61
SSMI-3 (22V)	-1.66	8.3	0.75
SSMI-4 (37V)	-1.89	8.4	0.72
SSMI-5 (37H)	-2.92	15.2	0.63
SSMI-6 (85V)	-0.97	9.5	0.68
SSMI-7 (85H)	-1.52	12.5	0.63

cold bias, V better than H, best performance with 22V & 37V

Time series of T_{skin} & T_{2m}

V better than H, best agreement with channels 3 & 4 (22V & 37V)

Conclusion

With a dynamic retrieval of emissivity over land, useful information can be retrieved from SSM/I over land

- Using SSM/I channels over land with a predictor adapted to land surface in the variational bias correction has a positive impact on the analysis performance and the forecast scores
- When compared to conventional T_{2m} temperatures, the performance of the T_{skin} retrieval is better with V than with H and the best agreement is found with channels 22V & 37V

Future work and issues

Assimilation of SSM/I over land

- Validation of TCWV field with AMMA GPS data & with MERIS data
- Evaluation of the impact on the African Monsoon hydrological cycle
- Intercomparison of the impact of SSM/I and AMSUB over land

T_{skin} retrieval

- T_{skin} vs T_{2m}: which depth is sounded ? Dependence on frequency
- T_{skin} vs SEVIRI retrieved T_s: microwave versus infrared
- T_{skin} vs T_{s first guess}
- Choice of the channel for T_{skin} retrieval (discarded from assimilation)
- How to assign T_{skin} to other channels ?
- How to improve the assimilation over land ?
 - Improve the use of emissivity (in the control variable ?)
 - Combination of dynamic retrieval of emissivity & T_{skin} ?

SPARE SLIDES

2nd Workshop on Remote Sensing and Modeling of Surface Properties Toulouse, 9-11 June 2009

Context

Assimilation of microwave data over land

Three land surface parameterizations with increasing complexity (Karbou et al. 2006)

Adapted to SSM/I

- Averaged emissivity (atlas)

- Averaged ϵ (2 weeks)
- ϵ estimates for SSM/I channels
- Ts from first guess

- Dynamically estimated emissivities

- ϵ estimated at SSM/I 19 V&H channels
- ϵ calculated at 19 GHz (V or H) affected to SSM/I channels
- Ts from first guess

- Emissivity from atlas and dynamically estimated skin temperature

- $\bullet \ \epsilon$ given by an atlas
- Ts estimated at SSM/I 19 V&H channels
- Calculated Ts as a guess for other channels

Estimation in ALADIN of T_{skin} retrieved from SSM/I over land

For a plane parallel non scattering atmosphere and a specular surface:

$$T_{skin} = \frac{Tb - (T_{\downarrow} \times (1 - \varepsilon_{atlas}) \times \Gamma) - T_{\uparrow}}{\varepsilon_{atlas} \times \Gamma}$$

Experimental framework

- Emissivity atlas obtained over a 2-month period (Jun-Jul 2006)
- Screening over a 1½-month period (1 Aug-15 Sep 2006)
- T_{skin} estimated for each channel
 - Comparison to "interpolated" T_{2m}
 (conventional data averaged within a radius of 0.5° around the satellite observation)

Tskin retrieved from RT model, observation and atlas

Forecast scores wrt synop data forecast-observation

forecast range

score

Emissivity atlas over the ALADIN France domain

SSM/I channel 4 (37V) land surface emissivity on average over a 2-month period (Jun-Jul 2006)

worse performance, stronger cold bias (East of France, Alps)