

Towards the use of SAR observations from Sentinel-1 to study snowpack properties in Alpine regions

Gaëlle Veyssière, Fatima Karbou, Samuel Morin et Vincent Vionnet

CNRM-GAME /Centre d'Etude de la Neige (CEN)

Snow: **Key role** in global energy and mass budgets → of prime importance for climate studies

The wish list: Snow Water Equivalent (SWE), snow extent, grain size, albedo everywhere as often as necessary.

Challenges: Snowpack is a **heterogeneous media**, relatively **few observations**:

- Remote sensing at microwave frequencies: very useful but still a challenging issue!
- Over snow covered areas: microwave signal varies according to the snowpack properties (SWE, grain size, ...)

SURFEX/ISBA-Crocus

- **❖** Numerical model
- Unidimensionnal
- Describes snow physical properties like density, Liquid water content, snow grains, ... for each layer
- ❖Vertical stratification
- ❖Up to 50 layers

To date, no observations are assimilated in Crocus

-> error accumulation during the season

Example at col de Porte (in-situ forcing)

Our objective: to assimilate relevant remote sensing microwave observations (active/passive) in the snow model Crocus

- sensitivity studies and synergy between active/passive data
- derive relevant information about snowpack properties
- adequate forward model to be interfaced with Crocus

Sentinel-1

- > ESA mission
- ➤ Two satellites orbiting 180° apart
- First part, Sentinel-1A was launched on April,3rd, 2014
- Polar orbit, at an altitude of 693 km
- ➤ Revisit time of 12 days -> 6 days with second part Sentinel -1B
- Radar instrument onboard

The instrument

- Synthetic Aperture Radar (SAR)
- Band frequencies : C-band
- Central frequency of 5.405 GHz
- 2 polarisations : VV and VH
- 250 km swath, resolution of 20m
- Various operational modes

SAR observations

- A Synthetic Aperture Radar (SAR), or SAR, is a radar system which uses the flight path of the satellite to simulate a very large antenna or aperture electronically, and that generates high-resolution remote sensing imagery
- The radar in the active mode send a wave and measures the wave that it's backscatter into its direction or the backscatter coefficient

SAR observations

- Level-1 products
- Pre-treatment with ESA S1-Toolbox

SAR Sentinel-1, 22/02/2014, 20m

Radiometric calibration: from intensity to basckscatter coefficient

Speckle filtering : reduce speckle noise

Terrain correction with IGN's 2008 DEM

Digital **E**levation **M**odel from **IGN**

Resolution: 25 m

Météo-France experimental site « Col de Porte »

Modelling of the backscatter coefficient

Outputs from CROCUS

- Temperature
- Depth
- Density
- Liquid Volumetric Water Content
- Snow Water Equivalent (SWE)
- Specific Surface Area (SSA)

Microwave Emission Model of Layered Snowpacks (MEMLS)

- MEMLS is based on a six-flux theory to describe radiative transfert into the snowpack
- Produce simulation of the backscatter coefficient (active) and of the brightness temperature (passive) of the snowpack at VV and VH

polarisation Wiesmann, A. and Mätzler, C.: Microwave emission model of layered snowpacks, 1999

MEMLS inputs:

...

- outputs from Crocus -> properties of the snowpack
- incidence angle
- snow ground reflectivity and its specular part
- ground temperature
- cross polarisation fraction

Simulations

- In this study the simulations are made at Col de Porte
- Two seasons 2014/2015 and the beginning of 2015/2016
- Simulations of the backscatter coefficient for the central frequency of the C-band (as Sentinel-1 SAR band frequencies)
- Simulations assuming several snowpack layers: from 3 to 10 layers
- Comparisons with SAR observations from Sentinel-1
- But also simulations of different properties of the snowpack to compare with

Simulations

 Comparison between in-situ measurements of snow height at Col de Porte and the simulations (3, 5 and 10 layers) for the 2014/2015 season

2014/ 2015

Simulations

Comparison between the simulated backscatter coefficient and the snow liquid water fraction of the snowpack (2014/2015 season)

 Comparison between the simulated backscatter coefficient and the snow liquid water fraction of the snowpack (beginning of 2015/2016 season)

Simulations versus observations

Simulations versus observations

Simulations of snow properties

 Simulations of snow properties for two different times with different backscatter coefficient values

Backscatter coefficient March,09 2015 ~ -6.5 dB Backscatter coefficient April,14,2015 ~ -10 dB

Snow liquid water fraction

- The density of the snowpack is lower in March,09,2015 than in April,14,2015
- The Snow Liquid Water Fraction of the snowpack is higher in March,09,2015 than in April,14,2015

Summary & Perspectives

- Simulations made ponctually in this study but we wish to extend it to larger alpine regions
- Use of Sentinel-1 SAR active observations for this study → wish to use active/passive observations from Ka-band (35.75 GHz) Saral/AltiKa altimeter but also active/passive data from L-band (1.20 GHz) SMAP radar/radiometer for example;
- The simulations are coherent with in situ measurements from the experimental site of Météo-France at Col de Porte and also with Sentinel-1 observations
- Better understand how the backscatter coefficient is linked to different properties of the snowpack like the number of layers, the density or the snow liquid water fraction

Thank you for your attention!