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Future CGMS Land Surface Working Group
(Steve English’s presentation earlier today)

Land surface modeling and observations are a cross-cutting theme extending 
across current five CGMS WG’s, eg
• IPWG:  longstanding action items on cold season, complex terrain (esp 

problematic for snow/drizzle)- Oct 2016 snowfall workshop in Bologna
• IWWG: surface winds closer to coasts, proposed wind+currents missions
• IROWG: increased exploitation of land/ocean surface reflections

Action items from WG’s useful for strengthening science objectives for future 
space missions, e.g NASA’s ongoing (2017) Decadal Survey

Topics are often specific, but common themes and challenges (“weather” lies 
between the surface and each observing platform), WG’s use each others data 
and products



Why is this work needed?

• The information content within space-based precipitation radar/radiometer 
observations is insufficient to describe the environmental and surface 
state controlling the precipitation process physics.

• Retrieval process brings in a-priori simulations and ancillary data, in order 
to apply common physics across all platforms/sensors.  Places a heavy 
burden on the “realism” of the Z and TB simulations.

• For simulations the MW surface emissivity vector needs to be specified for 
each sensor type, alongside associated thermodynamic state.

• And for retrievals, some way of “connecting” to the properties used for 
creating each database profile

A-priori Observations

 “connect” surface and 
environmental conditions to 

corresponding conditions within 
the a-priori collection

Current GPM-GPROF does this 
thru a “classification index”
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Fast moving frontal rain, cold air 
with isolated showers behind it, 
lower freezing levels Favorable low winds, 

plenty of moisture tap
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(Figure courtesy of Dr. Wes Berg, Colorado State Univ.)
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Using GMI/DPR Observations for Constraining 
Constellation Precipitation Estimates 

Most of the time it is not raining, and the surface can be studied from 
these observations, in light of previous conditions

Can we extract some “range” of surface and environmental conditions 
directly from the observations, to lessen dependencies upon model 
sources?

Use DPR Ku/Ka-band capability to discriminate “no-cloud” GMI 
scenes, relative to the sensitivity at Ka-band (fully accepting that DPR 
is not a cloud radar)



Historical Context: Grody’s 1991 Scattering Index (SI)

Grody, N.C. (1991), Classification of snow cover and 
precipitation using the Special Sensor Microwave Imager. 
J. Geophys. Res., 96, 7423-7435.

Various multispectral tests for 
discriminating snow, ice, desert, 

precipitation

Uses the 22V SSMI observations to estimate the non-scattering 
contribution to the 85V observations
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Concept of the DPR antenna scan

KuPR: 245 km (49 beams)

KaPR: 120 km (25 beams)

In the interlacing scan area (  ), the KaPR 
can measure snow and light rain in a high-
sensitivity mode with a double pulse width.

The synchronized matched 
beam (  ) is necessary for the 
dual-frequency algorithm.
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Ku-PR footprint (Normal scan, NS)                 : Δz = 250 m
Ka-PR footprint (Matched-scan with Ku, MS)  : Δz = 250 m
Ka-PR footprint (High-sensitivity beam, HS)   : Δz = 500 m

Courtesy T. Iguchi, NICT



3x3 DPR profiles 
surrounding each 

GMI

min-detectable 
cloud

cloud

Using DPR for Radiometer Scene Discrimination

4x4-km, 
250-m 
vertical

Z(Ku) < 15 dB  and
Z(Ka) < 15 dB  and
Z(Ka-HS) < 15 dB

(all bins)    “no cloud”

N bins where Z(Ku) > 20 dB as a proxy for 
increased level of cloudiness and 

precipitation
N > 20    “low probability”

N > 50    “medium probability”
N > 100    “high probability”

37-GHz 
resolution

increased likelihood 
cloudiness

cloud



Analysis Matched GMI/DPR Data 

Extensive, diverse collection from 1+ year 
of GMI “no-cloud” emissivity vectors 
everywhere within ±65 degree latitude, 
without regard to the surface type

If there was some way to 
estimate each principal 
component from the 
observations, then the 
emissivity vector e could 
be approximately 
reconstructed from the 
TB observations

Principal component analysis :

Assume nonlinear TB combinations and polarization 
ratios “carry” the information on the surface properties
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TB-Reconstructed Emissivity State Vector

N=9 (10-89 GHz)
High water vapor over 
land underestimated

N=11 (10-166 GHz)
Improvement in over-
land total vapor with 
inclusion of 166 GHz 
channels

N=7 (19-85 GHz 
SSMIS)
SSMIS (no 10 GHz) 
dataset from 1-year of 
F17-GPM 15-min 
coincidences  

e36H                             Tsfc                        Total Vapor



3 PC-based discriminant, using 9-channels in the 
regression, is a good compromise, also since S2 
(166, 183 GHz) channels not always available

Discrimination Performance
N(Ku) > 20 dB in column

N>0   N>20   N>50   N>100



Hudson Bay10H 18H 36H

89H 166H 183±8H



GPM+CloudSat Coincidence
22 September 2014

Hudson Bay Land-Water

No clouds evident in 
all three DPR scans 

Trace of all 13 GMI 
channels

Simulated TB difference 
(using ECMWF) Near 
seamless land-coast-
water transition across 
all 9 GMI (S1) channels

Resultant emissivity at 
first 9 GMI (S1) 
channels

Hudson Bay

DPR NS

DPR MS

DPR HS

CloudSat



10H

SE Alaska

18H 36H

89H 166H 183±8H



GPM+CloudSat coincidence
20 February 2015

Alaska winter mountainous terrain

No clouds evident in 
all three DPR scans 

Trace of all 13 GMI 
channels

Simulated TB difference 
(using ECMWF) within 
10K across all 9 GMI 
(S1) channels

Resultant emissivity at 
first 9 GMI (S1) 
channels

DPR NS

DPR MS

DPR HS

Extension to 166 GHz 
being examined for very 
dry cold scenes

CloudSat

GMI



Discrimination
POD(“no-cloud”)

90% High
Confidence

< 90%=Reduced
Confidence

Observations
TB 10H
TB 89H

TB 166H

MRMS
1-hr rain

Rain/Emissivity State Timeseries near a point:  S of Pensacola, FL, US

12 months
1 May 2014 – 1 May 2015

Mid-Latitude, Over-Water, No Coastal/Mixed Pixel Conditions



MERRA Ts
ERA-I Ts
Est. Ts

MERRA Tvap
ERA-I Tvap
Est. Tvap

Est. e10H
Est. e89H

MRMS
1-hr rain

Rain/Emissivity State Timeseries near a point:  S of Pensacola, FL, US

Closed Circles= High Confidence, Open Circles= Reduced Confidence



Observations
TB 10H
TB 89H

TB 166H

MRMS
1-hr rain

Discrimination
(“no-cloud”)

90% High
Confidence

Reduced
Confidence

12 months
1 May 2014 – 1 May 2015

Rain/Emissivity State Timeseries near a point:  West of Lubbock, TX, US

Soil type and scrub-like vegetation exhibit rapid rain response and dry-down



MERRA Ts
ERA-I Ts
Est. Ts

MERRA Tvap
ERA-I Tvap
Est. Tvap

Est. e10H
Est. e89H

MRMS
1-hr rain

Closed Circles= High Confidence, Open Circles= Reduced Confidence

Rain/Emissivity State Timeseries near a point:  West of Lubbock, TX, 
US



Observations
TB 10H
TB 89H

TB 166H

MRMS
1-hr rain

Discrimination
(“no-cloud”)

90% High
Confidence

Reduced
Confidence

12 months
1 May 2014 – 1 May 2015

Meghna River, Bangladesh, Seasonal Wetland (“Haor”)

Can also experience rapid emissivity change across inundated areas



MERRA Ts
ERA-I Ts
Est. Ts

MERRA Tvap
ERA-I Tvap
Est. Tvap

Est. e10H
Est. e89H

MRMS
1-hr rain

Closed Circles= High Confidence, Open Circles= Reduced Confidence

Meghna River, Bangladesh, Seasonal Wetland (“Haor”)



Observations
TB 10H
TB 89H

TB 166H

MRMS
1-hr rain

Discrimination
(“no-cloud”)

90% High
Confidence

Reduced
Confidence

12 months
1 May 2014 – 1 May 2015

Middle of Lake Superior, US/Canada

Inland Water Throughout Freeze-Thaw Conditions



MERRA Ts
ERA-I Ts
Est. Ts

MERRA Tvap
ERA-I Tvap
Est. Tvap

Est. e10H
Est. e89H

MRMS
1-hr rain

Closed Circles= High Confidence, Open Circles= Reduced Confidence

Middle of Lake Superior, US/Canada



Observations
TB 10H
TB 89H

TB 166H

MRMS
1-hr rain

Discrimination
(“no-cloud”)

90% High
Confidence

Reduced
Confidence

12 months
1 May 2014 – 1 May 2015

Northern Minnesota Forest, US

Cold surface, snowcover in cold season



MERRA Ts
ERA-I Ts
Est. Ts

MERRA Tvap
ERA-I Tvap
Est. Tvap

Est. e10H
Est. e89H

MRMS
1-hr rain

Closed Circles= High Confidence, Open Circles= Reduced Confidence

Northern Minnesota Forest, US



Applicability to Database Search: Example from Over-Ocean Warm SST

Gulf of Mexico
17 June 2014

DJF   MAM
JJA   SON

Associated co-variability 
in Tsfc and WV state 
variables

Search for “nearby” 
entries in leading 
EOF-space:

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map

suggests possible alternate 
ways to index databases 
(transformation of variables)

Associated co-variability in 
emissivity
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Applicability to Database Search: Example from Midlatitude Inland Water

Center of the 
Caspian Sea

17 March 2015

DJF   MAM
JJA   SON

Search for “nearby” 
entries in leading 
EOF-space:

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map

suggests possible alternate 
ways to index databases 
(transformation of variables)

Associated co-variability 
in Tsfc and WV state 
variables

Associated co-variability in 
emissivity
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Applicability to Database Search: Example from Bare Soil-Like, Daytime

West Texas
2 October 

2014

DJF   MAM
JJA   SON

Search for “nearby” 
entries in leading 
EOF-space:

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map

Associated co-variability 
in Tsfc and WV state 
variables

Associated co-variability in 
emissivity
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Applicability to Database Search: Snow Covered, Cold, Dry

NE Minnesota, 
snow-covered
1 March 2015

DJF   MAM
JJA   SON

Search for “nearby” 
entries in leading 
EOF-space:

Associated co-variability 
in Tsfc and WV state 
variables

Associated co-variability in 
emissivityThroughout the process, the only time that latitude/longitude was ever 

consulted, was to plot the points on the map
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Discriminant fails

Using previous-time TB 
where discriminant passes

Surface temp Column vapor



Current Efforts

Further evaluate emissivity vector formulation for stratifying/searching 
existing GPM a-priori databases (transformation of variables to different 
search index space)

Further evaluate utility of 166 GHz channels for cold-season (< 10 mm 
vapor) precipitation using GPM-CloudSat (W-band) coincidence 
dataset, , to better guide GPM snowfall and light rain TB simulations  

Offline version of GPROF-GPM to test and evaluate use of 
observationally-based emissivity vector in forward TB radiometer 
simulations

3-freq (Ku/Ka/W-band) Advanced Precipitation Radar (APR-3) data and 
MW radiometer during OLYMPEx (Nov-Dec 2015)
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