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Background/Motivation
• GPM precipitation algorithms require knowledge of surface emissivity 

and/or backscatter cross-section
– DPR algorithms rely on Surface Reference Technique to estimate path-

integrated attenuation (PIA)
– Combined DPR+GMI algorithm uses PIA and performs radiative transfer 

simulations in optimization procedure 
– Generation of GPROF database for partner constellation members require 

transfer from GMI freq/angle to other imagers/sounders
• Existing atlases (TELSEM) used in at-launch algorithms, but missing:
– Frequencies > 90 GHz
– Relationship between emissivity and radar backscatter cross-section (σ0)

• Unique capabilities of GPM instruments provide new opportunity for 
land surface studies
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Outline

• Overview of GMI and DPR instruments and 
precipitation algorithms

• Description of GMI surface emissivity retrieval & 
challenges

• One-year preliminary database of GMI emissivity 
matched to DPR σ0:
– Gridded means
– Impact of seasonal cycle, snow cover, recent rainfall
– EOF analysis

• GPM Combined Algorithm Implementation
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GMI Characteristics
• 13 channels from 10-183 GHz
• 1.2m reflector provides resolution ranging from 25km at 10 

GHz to 6km at 89+ GHz
• Four-point calibration at 10-36 GHz (calibration standard for 

constellation 1C products)
• 52.8° EIA at 10-89 GHz and 49.1° EIA at 166-183 GHz (scan 

lines do not match)
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GMI precipitation algorithm (GPROF) is a Bayesian procedure 
that weights a database of profiles based upon closeness to 
observed TBs. Explicit knowledge of surface emissivity not 
required, but databases are separated based upon surface type 
classification (14 classes), T2m, and TPW.
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DPR Characteristics
• Ku scans ±18° at 49 positions and 250m 

range resolution, oversampled at 125m
• Ka scans ±9° at 25 positions (matched to 

Ku) with an additional 24 interlaced 
positions in High-Sensitivity mode (500m 
range resolution oversampled to 250m)

• Ku receiver saturates at lower level than 
TRMM PR (22.5 dB)

• DPR algorithms use Surface Reference 
Technique to infer PIA (and its 
uncertainty) or differential PIA

• DPR+GMI algorithm uses PIA and explicit 
surface emissivity estimates (with 
uncertainty)
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Emissivity Retrieval from GMI
Key assumptions:
• Skin temperature from ancillary 

data (MERRA/GANAL)
• All channels considered 

independent, except:
– 23.8V (interpolated from 18.7V and 

36.6V)
– 183 ± 3 and 183 ± 7: Use same as 166V

• Adjust temperature/water vapor 
EOFs from analysis state 

• No cloud liquid (IR Tb can be used to 
screen in post-processing)

• No post-1C RFI screening
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Retrieval Issues:
Simulated – Observed Tb Residuals



Retrieval Issues: 
Dependence on Skin Temperature Source



Database Overview

• Database is designed to meet combined algorithm 
needs:
– Gridded means of emissivity at each frequency and σ0 at 

each frequency and incidence angle
– Covariance matrix between emissivity and σ0 at all 

incidence angles to derive EOFs 
• Challenge 1: Poor sampling of DPR at a given 

incidence angle
• Challenge 2: How to effectively use ancillary data to 

condition the mean and covariance matrix?
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DPR sampling
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Conditional Subsets – Impact of Seasonal 
Cycle on Emissivity
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Conditional Subsets – Impact of Seasonal 
Cycle on DPR Backscatter
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Conditional Subsets – Impact of Snow Cover 
on Emissivity
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Conditional Subsets – Impact of Snow Cover 
on DPR Backscatter
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Impact of Recent Rainfall

Extreme flooding event in early October 2015

Change in 
GMI 10H 
emissivity

Change in 
σ0 anomaly 
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GPM Combined Algorithm Implementation 
(Proposed for V5)

• Generate ensemble of solutions (modify precipitation 
profile and surface properties)
– Use gridded mean (by month) as base state emissivity, σ0

– Use class-based covariance-derived EOFS to guide 
perturbations to base state

• Ensemble filter uses sample covariance to determine 
sensitivity of measurements to precipitation/surface 
parameters and adjusts each ensemble member 
accordingly

• Final solution is mean of filtered ensemble
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Vegetation Class Example

EOF1 EOF2 EOF3 EOF4
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Snow Class Example

EOF1 EOF2 EOF3 EOF4
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Algorithm mechanics – generate ensemble and covariances, then 
filter ensemble

Initial Ensemble
(Mean and Obs. Error)

Rain adjustment (mean and σ)

Emis adjustment (mean and σ)

+ Ensemble 
covariances

Mean Rain Ku σ0 error 

Mean 18H 
Emis

18H error 

Rain-Ku Rain-18H

Emis-Ku Emis-18H
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Summary
• GMI is well-calibrated; emissivity can be retrieved up to 166 GHz under some 

conditions
• A 1-year database (Sept 2014-Aug 2015) of co-located DPR backscatter and GMI 

emissivity has been created
• Snow cover is the most dominant variable affecting backscatter and emissivity at 

a given location, but soil moisture/surface water and vegetation changes also 
have an effect

• Plan to produce all-sky emissivity estimates and use database-derived 
covariances in next version (5) of GPM products

• Research Topics:
– How to use ancillary data (snow cover/depth/SWE, soil moisture, vegetation data, …) to 

optimize EOF selection
– Move towards physically-based instead of statistical emissivity/backscatter models
– Understand impact of recent or ongoing precipitation (rain or snow) on surface properties
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