Assimilation of superficial soil moisture in the land surface scheme ISBA: comparison of Extended and Ensemble Kalman filters

D. Fairbairn, A. Barbu, J.-F. Mahfouf, J.-C. Calvet and E. Gelati

Météo-France/CNRM (Toulouse)

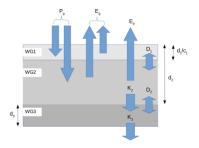
14 March 2016

Outline

14 March 2016

2

- Motivations
- The land surface scheme ISBA
- Extended and ensemble Kalman Filters
- Experimental set-up
- Results
- Conclusions and perspectives


Motivations

14 March 2016

17

- Soil moisture initialization is important for NWP
- Recent availability of soil moisture satellite missions (SMOS-2009, SMAP-2014)
- Evolution of soil analysis schemes in NWP models from OI to KFs (ECMWF-SEKF and EC-EnKF)
- Few studies have compared EKF and EnKF DA schemes
- Comparative study at local scale with in-situ observations for various climatic regimes and soil properties

The land surface scheme ISBA-Ags

Figure 1. The soil moisture fluxes for the three-layer version of ISBA. The variables P_g , E_g and E_{tr} represent the precipitation, bare soil evaporation and transpiration respectively. The fluxes *K* and *D* represent the drainage and diffusion at the bottom of the layer.

Non linearities

- DRY SOILS (*WG* < *WG*_{wilt}) : no evapotranspiration
- MOIST SOILS (WG > WG_{fc}) : potential evapotranspiration drainage
- OTHER REGIMES : no drainage - evaporation driven by soil moisture

Simplified Extended Kalman Filter

Background $(\mathbf{x}^{b}(t_{i}))$ is a nonlinear propagation of previous analysis:

$$\mathbf{x}^{b}(t_{i}) = \mathcal{M}(\mathbf{x}^{a}(t_{i-1}))$$

Observation (\mathbf{y}^{o}) assimilated at time t_{i} and weighted using Kalman gain (\mathbf{K}) :

$$\mathbf{x}^a = \mathbf{x}^b + \mathbf{K}(\mathbf{y}^o - H(\mathbf{x}^b))$$

with :

$$\mathbf{K} = \mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$$

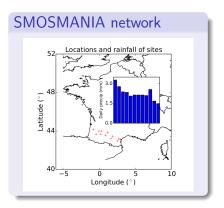
where **B** is a climatological and diagonal background-error covariance. The Jacobian operator **H** is obtained in finite differences by perturbing each component of the state vector \mathbf{x} .

Ensemble Kalman Filter : EnSRF

Background ensemble calculated from previous analysis ensemble:

$$\mathbf{x}_j^b(t_i) = \mathcal{M}(\mathbf{x}_j^a(t_{i-1})), \qquad \textit{for} \qquad j=1,..,m.$$

Background perturbation matrix \mathbf{X}^{b} (of dimension $n \times m$) comes from m columns of perturbed vectors $\delta \mathbf{x}_{i}^{b} = \mathbf{x}_{i}^{b} - \overline{\mathbf{x}}^{b}$:


$$\mathbf{X}^{b} = \frac{1}{\sqrt{m-1}} \left[\delta \mathbf{x}_{1}^{b}, ..., \delta \mathbf{x}_{m}^{b} \right]$$

Ensemble background-error covariance matrix: $\mathbf{P}^{b} = \mathbf{X}^{b} (\mathbf{X}^{b})^{T}$ The EnSRF reduces the Kalman gain in the analysis perturbation update:

$$\delta \mathbf{x}_j^a = \delta \mathbf{x}_j^b - \alpha \mathbf{K} \mathbf{H} \delta \mathbf{x}_j^b$$

14 March 2016

where $\alpha = 1/(1 + \sqrt{R/(HP^{b}H^{T} + R)})$

Experimental set-up

- 12 grass-land sites (2007-2010)
- Daily in-situ observations of WG1 (for assim) and WG2 (for verif)
- ISBA-Ags forced with SAFRAN atmospheric analyses (8×8 km²)
- 24-h assimilation cycle with synthetic (S) and read (R) observations
- SEKF and EnSRF parameters tuned to produce the largest analysis ACC

14 March 2016

DA experiments with S and R

DA component	Synthetic DA experiment	Real DA experiment
Truth	Model run	Unknown
Model	Model run + Eq. (17)	Model run
Assimilated obs.	WG1: model run + obs. error	WG1: 5 cm depth in situ obs. + linear rescaling
EnSRF calibration	Eq. (17)	Eqs. $(15) + (17)$
SEKF calibration	Eq. (14)	Eq. (14)
Validation data	WG2: truth simulation	WG2: 30 cm depth in situ obs. $+$ linear rescaling

$$\begin{array}{ll} \operatorname{Eq} \ (17): & \mbox{Pr^*} = \mbox{Pr} + \mathcal{N}(0,50\%\mbox{Pr}) \\ \operatorname{Eq} \ (14): & \mbox{σ_{WG}^b} = \lambda^b (WG_{fc} - WG_{wilt}) \\ \operatorname{Eq} \ (15): & \mbox{ε_{WG}} = \lambda^b (WG_{fc} - WG_{wilt}) \end{array}$$

EnSRF additive inflation : first order autoregressive model with $\tau = 1$ day for WG1 and $\tau = 3$ days for WG2

14 March 2016

8 / 17

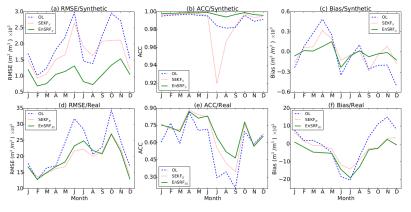
Impact of the ensemble size

14 March 2016

Table 4. Site-averaged and time-averaged WG2 performances for $EnSRF_S$ and $EnSRF_{R1}$ for various ensemble sizes. The calibrated EnSRF is shown in bold font.

Ens. size	EnSRF _S WG2 RMSE $(m^3 m^{-3}) \times 10^3$	$\begin{array}{c} {\rm EnSRF_{R1}}\\ {\rm WG2\ RMSE}\\ ({\rm m^3\ m^{-3}})\times 10^3 \end{array}$	EnSRF _S WG2 ACC	EnSRF _{R1} WG2 ACC
3	1.6	24.2	1.00	0.647
6	1.4	22.5	1.00	0.687
20	1.1	20.8	1.00	0.720
50	1.1	20.9	1.00	0.719
200	1.1	20.9	1.00	0.719

Summary of the results


METEO FRANCE

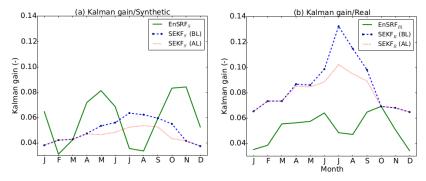
14 March 2016

10 / 17

Exp.	Obs. λ^0	$\begin{array}{c} Calibration \\ WG1 \ \lambda_1^b \end{array}$: WG2 λ ₂ ^b	Add. criteria	$\begin{array}{l} \text{WG2 RMSE} \\ \text{(m}^3\text{m}^{-3}\text{)}\times 10^3 \end{array}$	WG2 ACC	WG2 bias $(m^3 m^{-3}) \times 10^3$
Ens	-	-	0.025	_	9	0.97	-4.9
Ens _{bc}	-	-	0.025	Bias correct	4	0.99	0.6
OLS	_	_	_	$\epsilon_{\rm Pr} = 50 \% \rm Pr$	2.2	0.995	0.0
EnSRFS	0.05	_	-	$\epsilon_{\rm Pr} = 50 \% \rm Pr$	1.1	0.999	0.02
SEKFS	0.05	0.04	0.02	_	1.8	0.996	0.01
OLR	_	_	_	_	24.7	0.607	0.03
EnSRF _{R1}	0.5	0.2	0.03	-	20.8	0.720	-5.32
EnSRF _{R2}	0.5	0.1	0.03	$\epsilon_{\rm Pr} = 50 \% \rm Pr$	21.2	0.722	-5.82
EnSRF _{R3}	0.5	0.25	0.035	Bias correct	21.3	0.690	-2.79
SEKF _R	0.5	0.25	0.25	-	20.1	0.716	-2.21

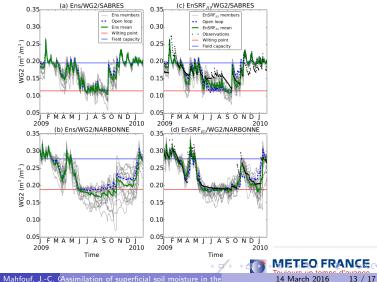
Evaluation of deep soil moisture content WG2

(Open loop) (EnSRF) (SEKF)


14 March 2016 11 / 17

Kalman gain

FRANCE


12 / 17

14 March 2016

(SEKF - H not bounded) (SEKF - H bounded) (EnSKF)

Ensemble forecasts + EnSRF over two contrasted sites

Conclusions (1)

- SEKF and EnSRF (20 members) have been compared at local scale over 3 years at 12 sites (SMOSMANIA network: in-situ soil moisture observations)
- Assimilation of superficial soil moisture (satellite proxy) in an optimal framework for deep soil moisture validation and error tuning
- Assimilation of synthetic observations: EnSRF superior to the SEKF
- Assimilation of real observations: no real gain of the EnSRF
- Both data assimilation schemes suffer from features of the ISBA scheme (non linear + dissipative): sub-optimal analyses
- Benefit of assimilating satellite derived superficial soil moisture for NWP and hydrology is not straightforward

Conclusions (2)

- SEKF is more robust (less parameters to specify) and cheaper but does not account for model and forcing errors
- EnSRF produces more physical seasonal variations of background errors
- Need to improve in the EnKF the precipitation forcing error representation (to account for false detection and missing events)
- Comparative study over a 2D domain with actual satellite data (e.g. L-band Tbs)

Perspectives

- Surface EnKFs should be more compatible with atmospheric EDA systems: coupling aspects
- EnKF cost will reduce when land surface schemes have more variables (multi-layer version of ISBA)
- EnKF can account for spatial (horizontal and vertical) correlations
- Improved land surface physics (multi-layer soil scheme + multi-energy budgets) should lead to more realistic Kalman gains
- Non-linearities cannot be properly adressed with KFs: variational techniques ? particle filters ?

More details in ...

14 March 2016

Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions

D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati

CNRM-GAME, UMR3589 - Météo-France, CNRS, Toulouse, France

Hydrol. Earth Syst. Sci., 19, 4811–4830, 2015 www.hydrol-earth-syst-sci.net/19/4811/2015/ doi:10.5194/hess-19-4811-2015