

Introduction to the Development of a Dynamic Infrared Land Surface Emissivity Atlas based on IASI Retrievals

Rory Gray

rory.gray@metoffice.gov.uk

Contents

- Background and Motivation
- Atlas Construction
- Preliminary Runs
- Summary and Next Steps
- Extending Use of AMSU-A over Land

Motivation

NRT atlas

- up-to-date information
- short term variability
- assimilation surface sensitive IR channels over land for NWP (FG for 1dvar)
- apply to other IR instruments such as SEVIRI
- improve Tskin accuracy

surface emissivity sensitive IR wavelengths

IASI (Infrared Atmospheric Sounder Interferometer)

- CNES/EUMETSAT
- MetOp-A (2006), MetOp-B (2013)
- Hyperspectral IR Sounder (8461 channels)
- Spectral Range 3.62 15.5 μm
- Mid-morning orbit 09:30 (desc) / 21:30 (asc)

1dvar Retrieval of Emissivity

- $\varepsilon(\lambda)$ retrievals from estimation of PC coefficients in 1dvar
- high dimensional data set reconstructed from PC set of reduced dimensionality
- skin temperature, cloud top pressure and cloud fraction also retrieved

Lab Spectral Emissivities (UCSB Emissivity Library)

Atlas Construction

- Gridded dataset
- emissivity spectral estimate for each gridbox
- NRT updates from 1dvar IASI emissivity retrievals
 - -> initially mean for each gridbox
 - -> eventually data driven Kalman Filter

Kalman Filter Implementation

- Initial $\underline{\varepsilon}$ over each gridbox
- persistence model for each $\varepsilon(\lambda)$ in each gridbox
- 1dvar retrievals as measurement updates
- measurement noise from 1dvar analysis covariance matrix
- update $\underline{\varepsilon}$ for each relevant gridbox

www.metoffice.gov.uk

Atlas construction IASI chan.1884 (8.96µm)

www.metoffice.gov.uk

www.metoffice.gov.uk

Summary and Next Steps

- KF implementation
 - R-noise from 1dvar analysis error cov matrix
 - Q-noise from UWIREMIS (or derived variation)
 - P cov estimate
- Snow consideration

$$\varepsilon(\lambda) = (1-sfc)^* \varepsilon_{retrieved}(\lambda) + sfc^* \varepsilon_{snow}(\lambda)$$

- Diurnal Variation
- Scan angle dependence
- Test and Validation against other sources and instruments
- Application to other current and future IR instruments
 - SEVIRI, HIRS, MTG-IRS, IASI-NG
- Use in Met Office Data Assimilation system
- Available to all centres

Extending our use of AMSU-A over land

(Stu Newman and Bill Bell)

1D-Var retrieval of microwave emissivity and skin temperature

- Current operational usage at the Met Office: land surface emissivity fixed at 0.95 and lower-peaking channels AMSU 4 & 5 not assimilated over land
- Aim: use microwave emissivity atlas (Fatima Karbou / Météo France) as a first guess in a 1D-Var retrieval
- Atlas is tabulated for frequencies 23.8, 31.4, 50.3 & 89 GHz (AMSU channels 1, 2, 3 & 15) per calendar month
- Use atlas uncertainty estimate to derive observation-dependent errors
- 1D-Var retrieval of Tskin and microwave emissivity

AMSU ch 3 emissivity (March)

AMSU channel 3 raw atlas data

Atlas uncertainty estimate

AMSU channel 3 raw atlas uncertainty

Improved modelling of surface sensitive channels

- Before 1D-Var the atlas provides a reasonable first guess
- Retrieved skin temperature and emissivity for AMSU-A channel 3 at 50.3 GHz is used as representative for channels 4 & 5 (52.8, 53.6 GHz)
- After 1D-Var retrieved skin temperature and emissivity are passed to 4D-Var where AMSU-A channels 4 and 5 are assimilated (as well as current channels 6-14)

NWP global experiments

- Assimilation of AMSU-A channels 4 & 5 over land tested in global experiments for summer and winter seasons (on top of full observing system)
- Improvements seen in RMS forecast-analysis error for tropospheric temperature at short range in Southern Hemisphere; results mixed in Northern Hemisphere
- Overall verification considered positive, assimilation of AMSU-A 4&5 over land to be included in next set of planned operational changes mid-2016

Temperature (Kelvin): Analysis Southern Hemisphere (CBS area 18.75S-90S) Equalized and Meaned from 22/6/2015 00Z to 12/8/2015 18Z

RMS error reduction ~2% for SH lower atmospheric temperature vs analysis