

Laboratoire de Glaciologie et Géophysique de l'Environnemen

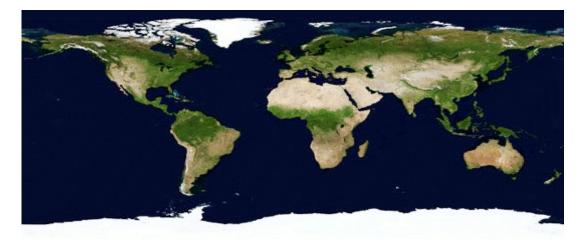
Towards the assimilation of MODIS reflectances into the detailled snowpack model SURFEX/ISBA- Crocus

LUC CHARROIS 1,2

E. COSME², M. DUMONT¹, M. LAFAYSSE¹, S. MORIN¹, Q. LIBOIS², G. PICARD² and L. ARNAUD²

¹MÉTÉO-FRANCE / CNRS, CNRM-GAME URA 1357, CEN, ST. MARTIN D'HÈRES, FRANCE ²UNIVERSITÉ GRENOBLE ALPES-CNRS, LGGE, UMR 5183, GRENOBLE, FRANCE

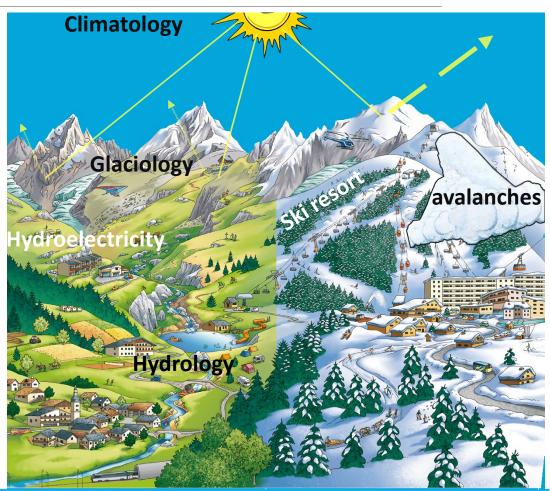
Snow cover Large scale



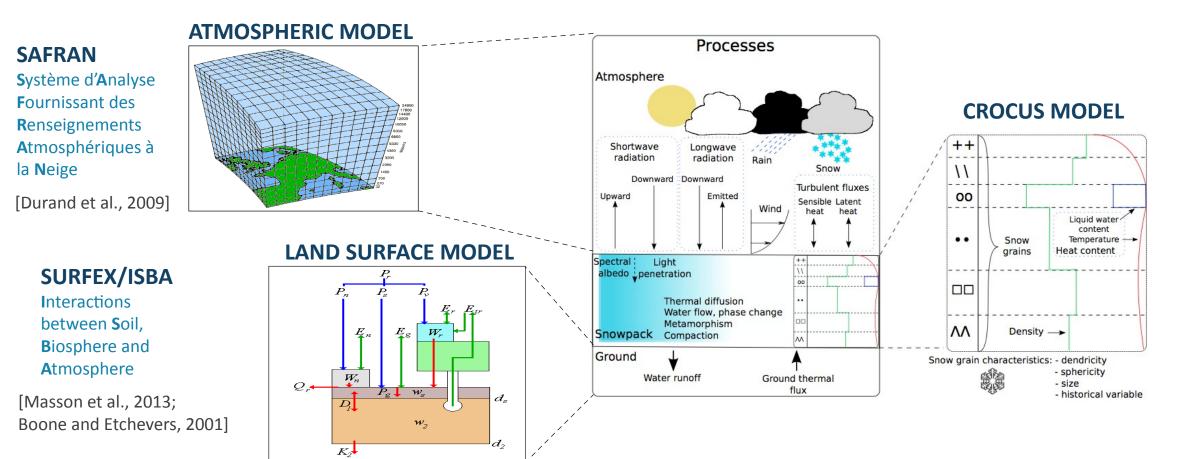
<u>Seasonal snow cover:</u>

- Surface North hemisphere ~ 100 x10⁶ km²
- Snow cover up to ~ 40 50 x10⁶ km² (up to 50% !!)
- Permanent snow (glacier & icesheet) ~16 x10⁶ km²
- Snow on sea ice ~ 24 x10⁶ km²

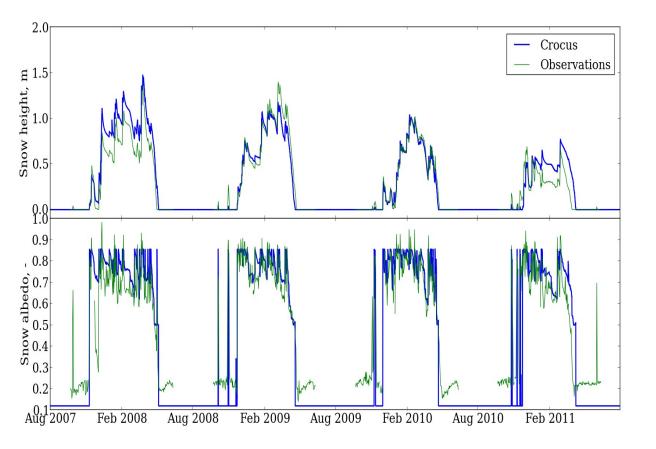
Regional scale



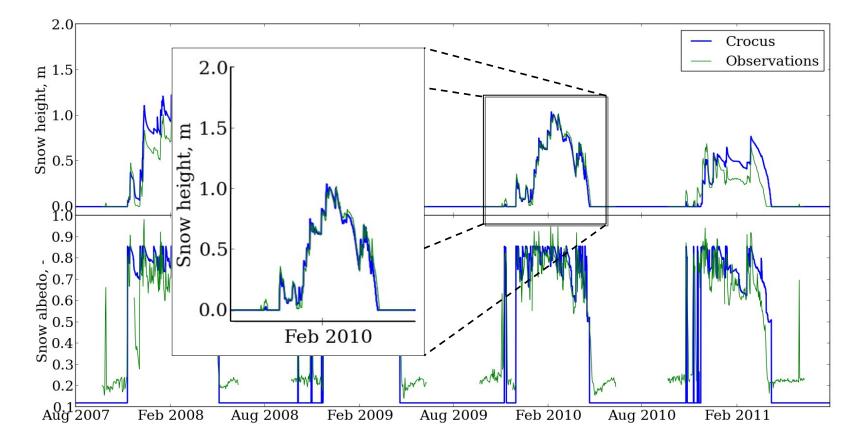
Snowpack modeling Models chain (SAFRAN- SURFEX/ISBA – Crocus)



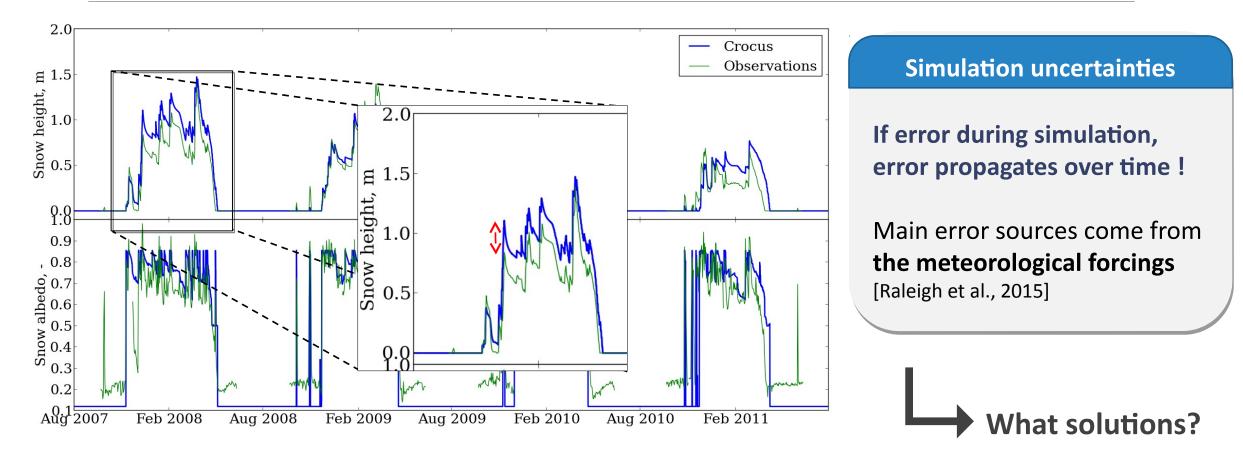
Comparisons at Col de Porte site (1326m)



And that can work well !



But not so easy (real world!) ...

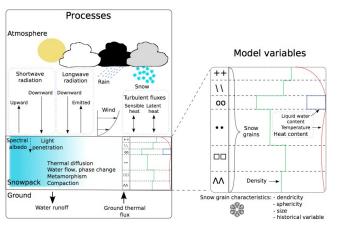


Data Assimilation: Ingredients !

Combine different sources of information to estimate at best the state of a system.

Model

SURFEX/ISBA - Crocus



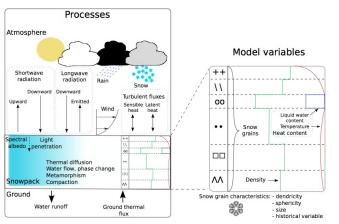
- non-linear
- Crocus uncertainties ascribed to meteorological forcing
- Dynamic vertical discretisation

Data Assimilation: Ingredients !

Combine different sources of information to estimate at best the state of a system.

Model

SURFEX/ISBA - Crocus



- non-linear
- Crocus uncertainties ascribed to meteorological forcing
- Dynamic vertical discretisation

Observations

Ground automatic measurements

Satellites observations

In situ measurements

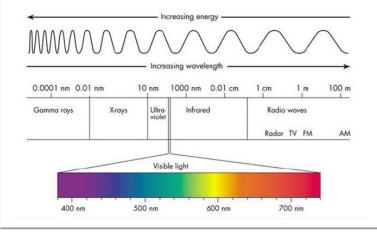
Satellite observations

Microwave data

Optical data

- Cloud coverage
 - Penetrate down snowpack
- Coarser resolution (passive)
- Wet snow (passive/active)
 - Lack of data (active)

[Andreadis et Lettenmaier, 2005; Che et al., 2014; Liu et al., 2013; De Lannoy et al., 2012; Phan et al., 2013; Dechant et al., 2012;]



- Surface information
- Cloud coverage
 - Canopy
 - Snow products: SCF, Albedo, grain size
 - Next slide ..

SCF AD: [Andreadis et Lettenmaier, 2005; De Lannoy et al., 2012; ...]

Albedo AD: [Dumont et al., 2012]

MODIS MODerate resolution Imaging Spectradiometer

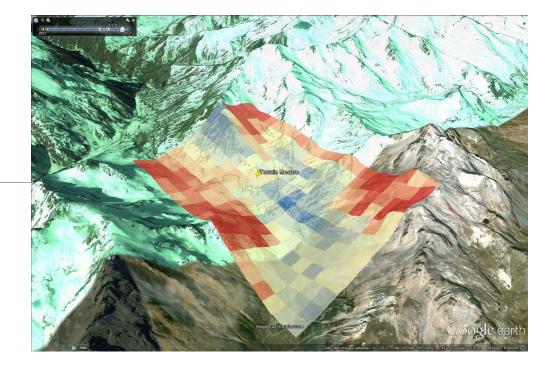
MODimLab: MODIS Algorithm (Atmospheric, topographic, anisotropy..)

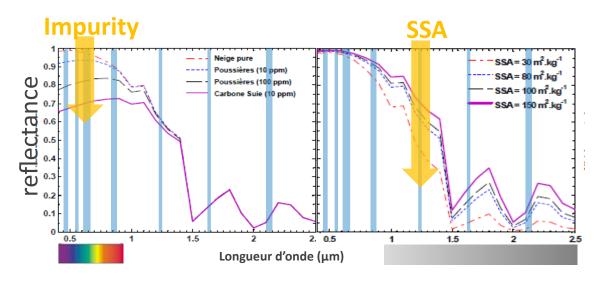
[Sirguey et al., 2009]

- Sensitivity to snowpack properties Impurity content & SSA
- Spatial & temporal resolution 250x250m / 1 overpass / day
 - 7 spectral bands

Observation operator

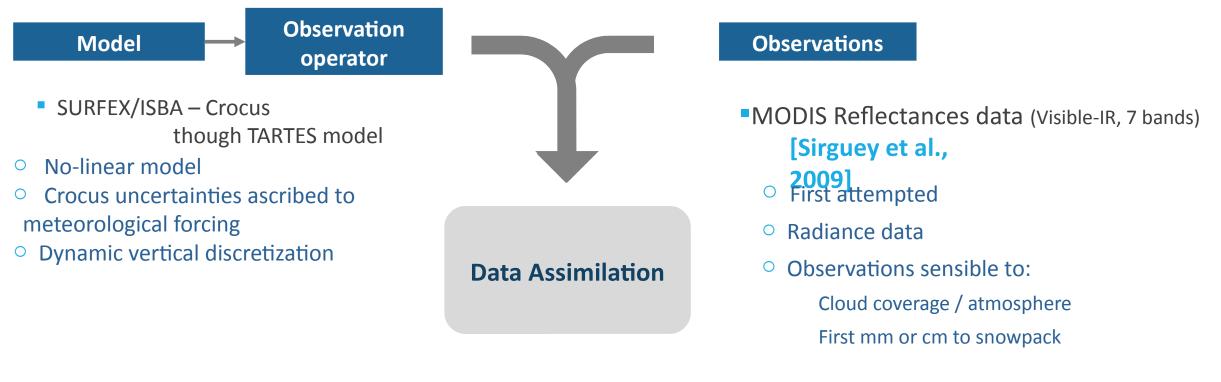
[Libois et al., 2013, 2014]: implemented into Crocus, a new radiative model **TARTES** provides **spectral reflectances** matching MODIS data





Data Assimilation: Ingredients !

Combine different sources of information to estimate at best the state of a system.



Data Assimilation, which one?

Combine different sources of information to estimate at best the state of a system.

Data Assimilation LGGE - MEOM

Kalman Filter

[Liu et al., 2013, De Lannoy et al., 2012; Slater and Clark, 2005; Chet et

al., 2014; Andreadis and lettenmaier, 2005, Abaza et al., 2015; ...]

Variational methods

[Dumont et al., 2012, Phan et al., 2014, ...]

Particle Filter

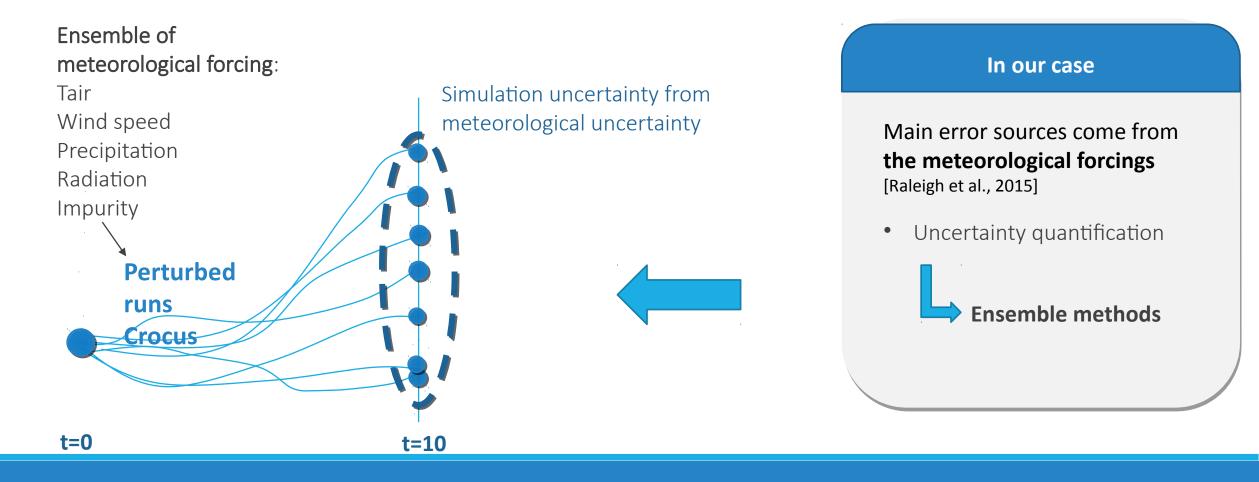
[Dechant et al., 2010; Leisenrig and Moradkhani, 2010, ...]

Depends on ...

- Uncertainty estimation
- Linear / Non Linear Model
- Gaussian error distribution
- Computation time
- Model structure
- ...

Ensemble method

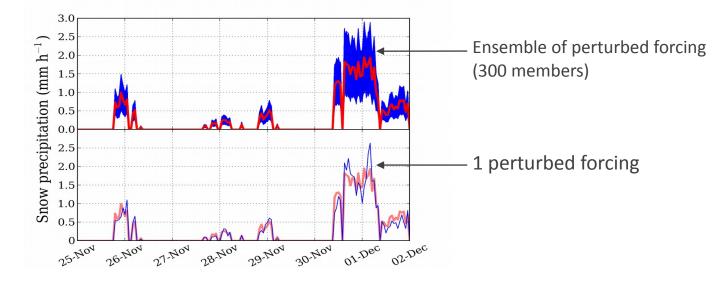
Combine different sources of information to estimate at best the state of a system.



Generation of an ensemble of perturbed meteorological forcings

Comparisons between in situ measurements and SAFRAN estimations (18 years)

- Tair
- Wind speed
- Precipitations
- Radiations (SW/LW)



Uncertainty of all variables forcing

Stochastic Perturbation method AutoRegressive Model AR(1) Based on Col de Porte statistics Introduction of perturbation at each time step

Data assimilation, which one?

Combine different sources of information to estimate at best the state of a system.

Kalman Filter

[Liu et al., 2013, De Lannoy et al., 2012; Slater and Clark,

2005; Chet et al., 2014; Andreadis and lettenmaier, 2005, Abaza et al., 2015; ...]

Variational methods

[Dumont et al., 2012, Phan et al., 2014]

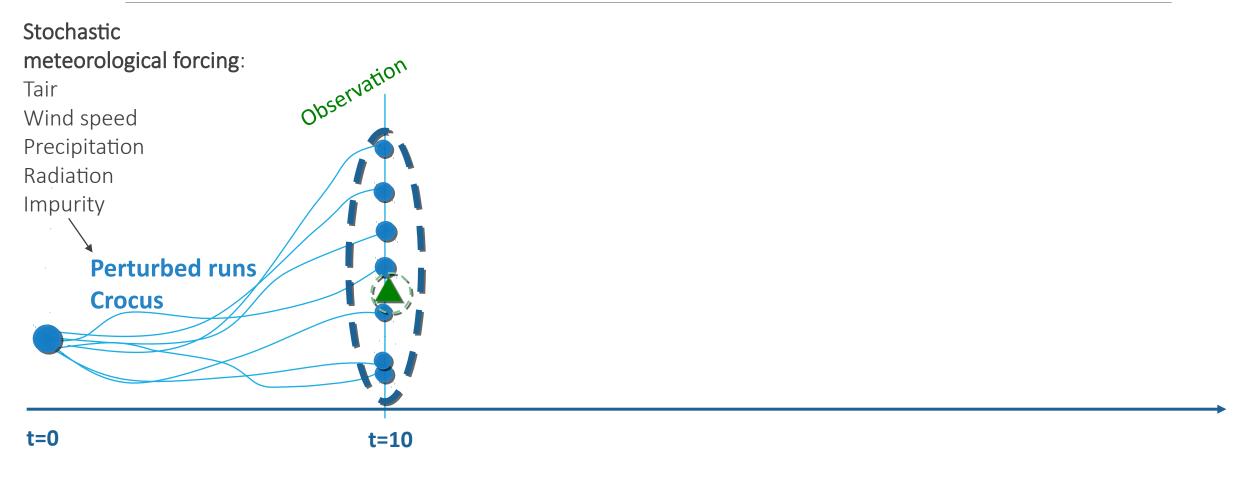
• Particle Filter [Van Leeuwen, 2009, 2014]

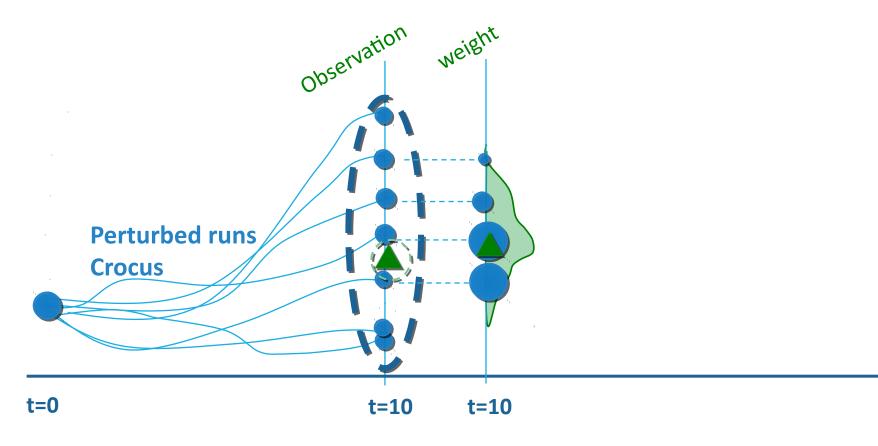
Data Assimilation LGGE - MEOM

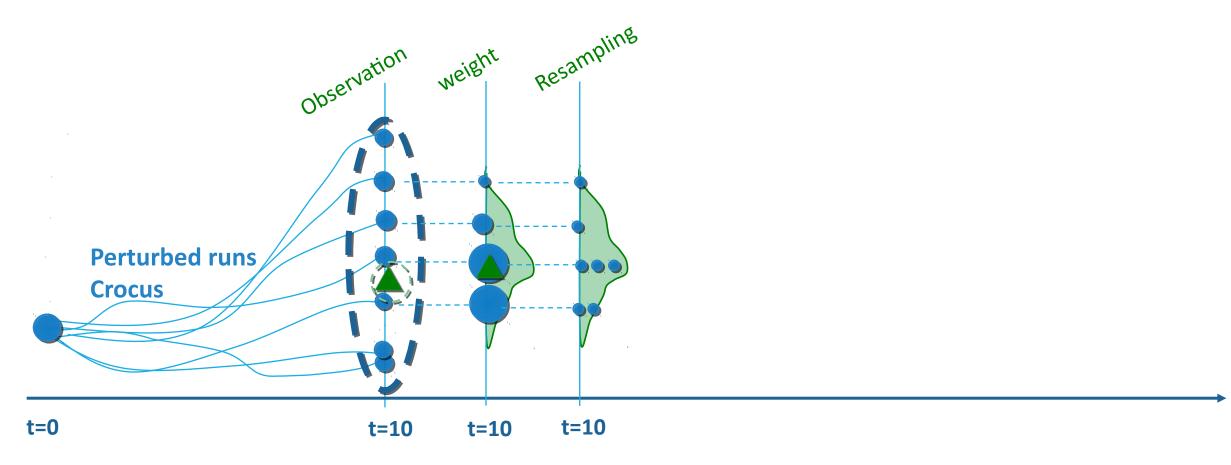
In our case

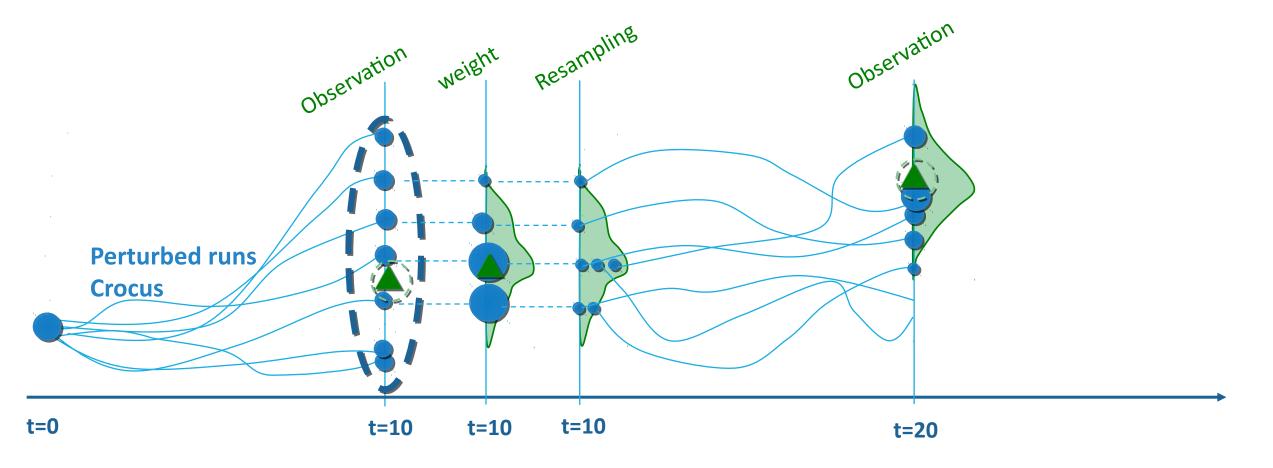
- Uncertainty quantification
- Non Linear Model
- Dynamical Layering
- Easy to implement
- No concerned on computation

time (for now)

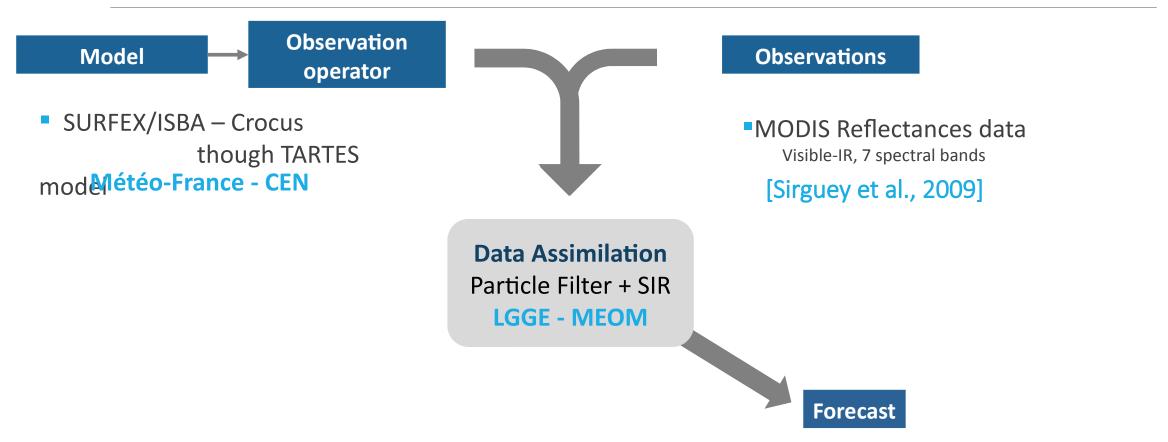




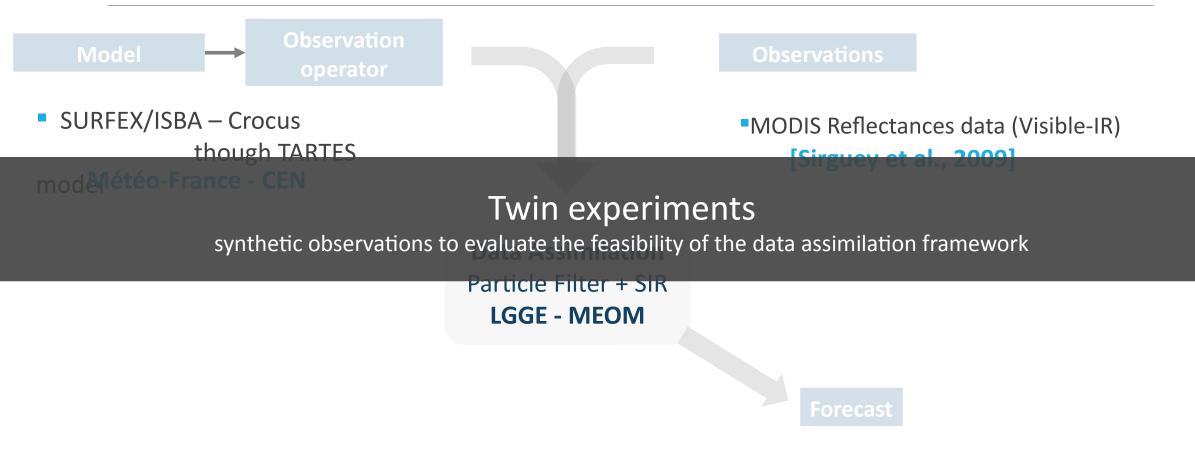




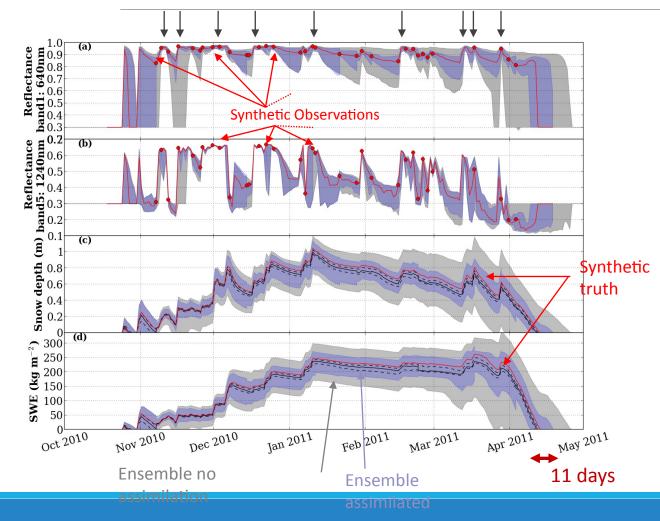
Data assimilation into Crocus Many challenges ...



Data assimilation into Crocus Many challenges ...



Assimilation of reflectances (synthetic observations) Baseline experiment



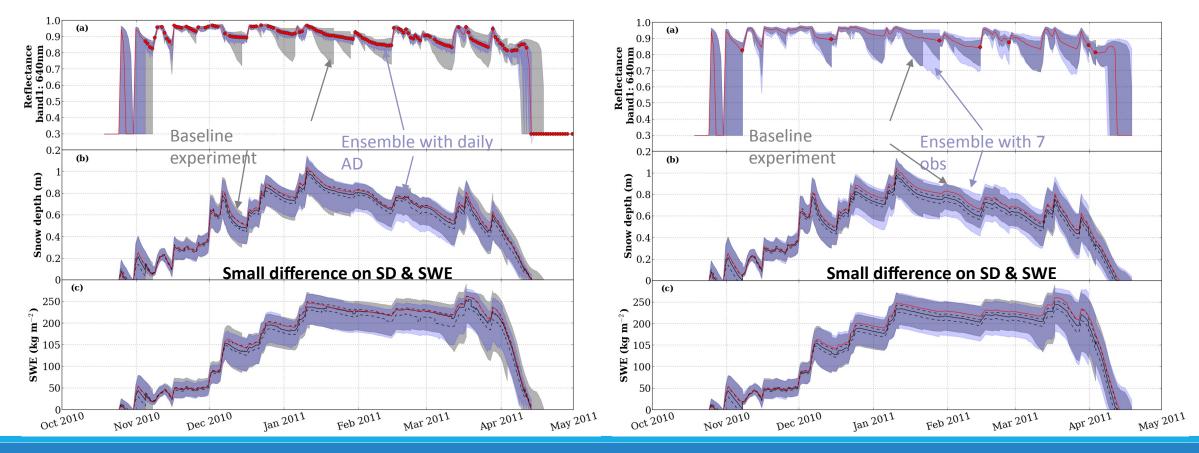
RMSE reduction by a factor of 2 compared to ensemble without assimilation

Results

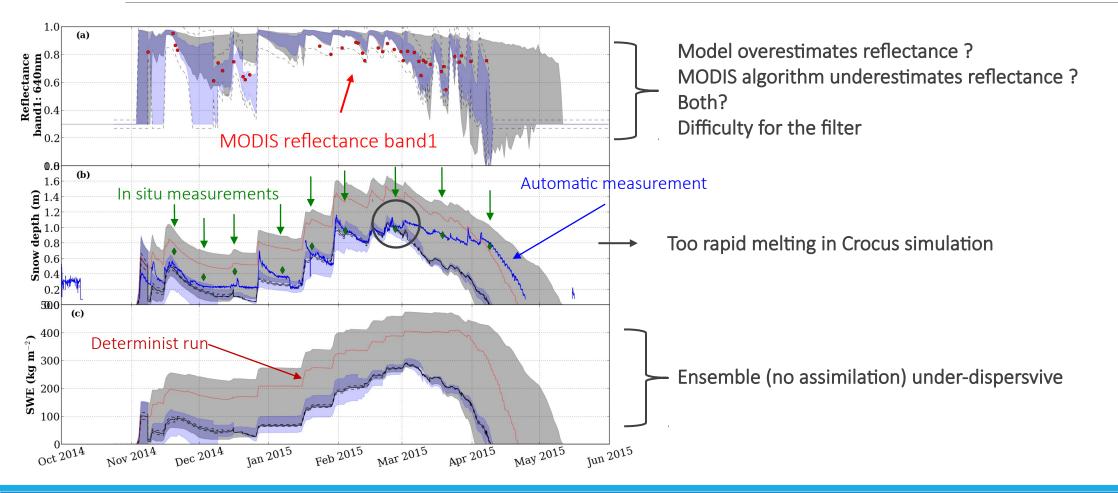
- •The RMSE after DA is always lower than prior DA
- Date of complete snow disappearance, 11 days range against 24n without DA
- Resetting process with snow fall events limits SIR efficiency
- Need regular and frequent observations but only 34 dates available over 2010/2011 seasons

Cloud coverage Daily Assimilation vs Assimilation of 7 observations

The time distribution of the observation: The end of an extend period without precipitation



Real data MODIS assimilation, Col du Lautaret 2014-2015



Conclusion

Assimilation of synthetic reflectance data

- High impact in case of thin snow cover
- RMSE always reduced than prior DA
- Fresh snow limits the performance of the filter -> need regular observations & well distributed

Assimilation of synthetic snow depth data

- Outperforms except for thin snow cover
- But point-scale information

Assimilation of both combined

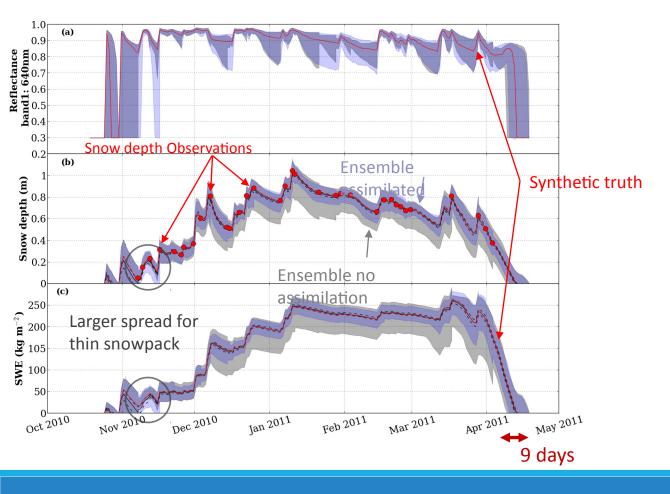
• Might be useful to mitigate limitations of these 2 kinds of observational datasets

Assimilation of Real MODIS data

- Need to compare model and MODIS with in situ measurements
- Too rapid melting in Crocus simulation

Thank you

Assimilation of snow depth data (synthetic) Same setup than baseline experiment

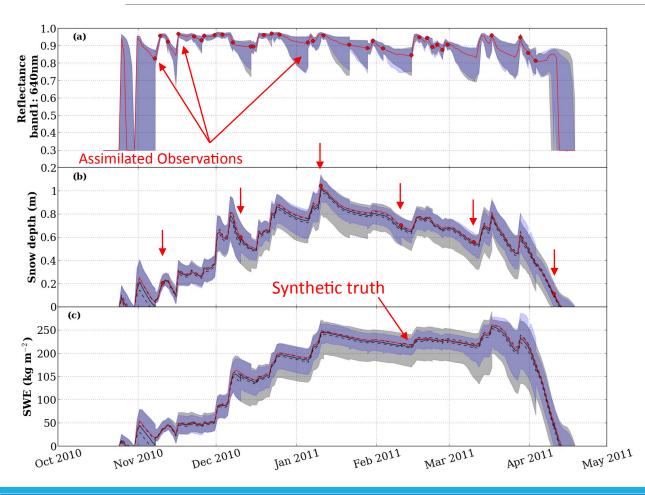


RMSE reduction by a factor of 3,5 compared to ensemble without assimilation

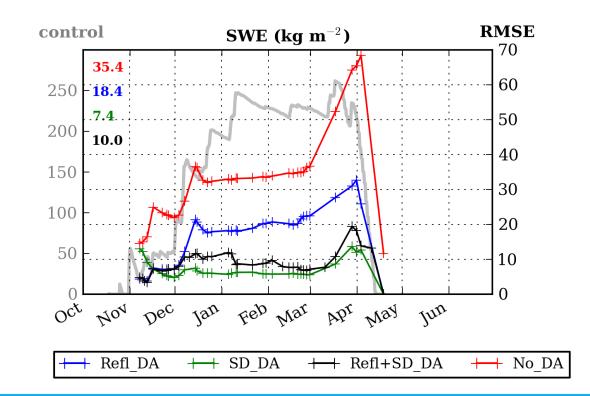
Results

- The RMSE after DA is always lower than prior DA
- Date of complete snow disappearance, 9 days range against 11 days for ensemble with reflectance DA and 24 days without DA
- Compared to ensemble with reflectance DA, larger spread for the beginning of seasons
- Less efficient for thin snow cover
- Not spatial information with this observation

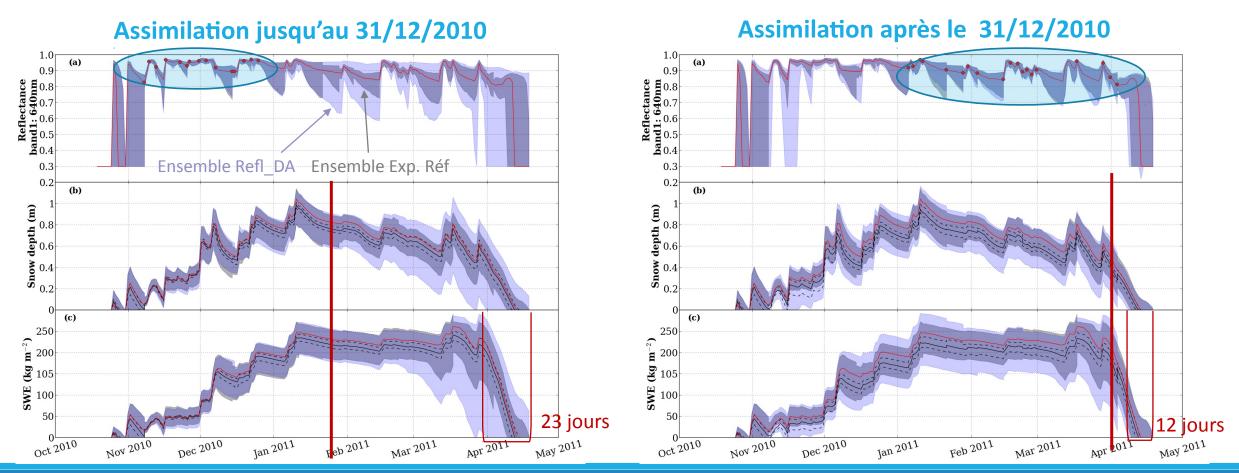
Assimilation of both combined



Better than Reflectance only, less than snow depth only

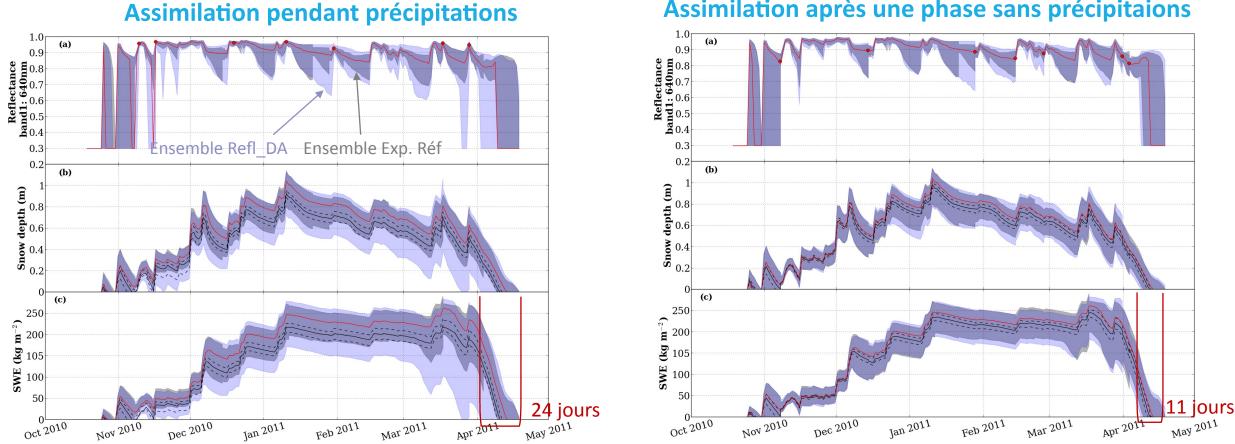


Sensibilité timing des observations



- No DA
- Reflectance DA
- Snow depth D.

En utilisant 7 observations...



Assimilation après une phase sans précipitaions

Ensemble de forçages météo perturbés

Méthode de perturbation

First Order Auto Regressive model: AR(1)

 $X_{t} = c + \varphi X_{t-1} + \varepsilon_{t} \qquad \varepsilon_{t} \approx \mathcal{N}(0, \sigma^{2})$

Incertitude de chaque forcage

Statistiques sur 18 ans entre obs & données simulées (SAFRAN) $\rightarrow \sigma^2$

Méthode **Additive** ou **multiplicative** pour générer l'ensemble de forcage météo

Snowpack Model

Ensemble perturbés comprenant :

- Air Temperature
- Longwave Radiation
- Wind speed

31

- Shortwave Radiation
- Snow/Rain fall

