Comparison of ECMWF model skin Temperature with SEVIRI LST

How satellite-based skin temperature can support model development?

Isabel F. Trigo, Souhail Boussetta, Pedro Viterbo, Gianpaolo Balsamo, Anton Beljaars, and Irina Sandu, JGR 2015 http://onlinelibrary.wiley.com/doi/10.1002/2015JD023812/full

Presented by Gianpaolo Balsamo

ECMWF, Earth System Modelling Section, Coupled Processes team pad@ecmwf.int

Outline

- Comparison of ECMWF Skin Temperature and SEVIRI/ Land-SAF Land Surface Temperature estimates to assess changes in:
 - Model representation of vegetation LAI
 - Model Surface roughness Aerodynamic Resistance
 - Parameter controlling ground flux skin conductivity

Land surface model status at ECMWF and evolution since ERA-Interim

Hydrology-TESSEL

Balsamo et al. (2009) van den Hurk and Viterbo (2003)

Global Soil Texture (FAO)

New hydraulic properties

Variable Infiltration capacity & surface runoff revision

NEW SNOW

Dutra et al. (2010)

Revised snow density

Liquid water reservoir

Revision of Albedo and sub-grid snow cover

NEW LAI

Boussetta et al. (2013)

New satellite-based

Leaf-Area-Index

SOIL Evaporation

Balsamo et al. (2011),

Albergel et al. (2012)

• H₂O / E / CO₂

Integration of

Carbon/Energy/Water

Boussetta et al. 2013

Agusti-Panareda et al. 2015

Flake

Mironov et al (2010),

Dutra et al. (2010),

Balsamo et al. (2012, 2010)

Extra tile (9) to for sub-grid lakes and ice

LW tiling (Dutra)

Satellite Land Surface Temperature (LST)

As a model diagnostic tool

ECMWF Skin Temperature:

- Corresponds to a thickness-less surface, close to the radiometric temperature that is obtained from thermal infra-red channels
- Plays a role in the partitioning between latent and sensible heat fluxes at surface;
- Its diurnal cycle is associated to the degree of coupling between the land and the atmosphere that is shown to vary greatly across models.

Model deficiencies in skin temperature

- > provide an indication of problems in surface energy fluxes and soil moisture ...
- with impact on predictability of NWP / Earth System Models at medium and monthlyrange.

ECMWF Tskin and SEVIRI LST

Clear sky cases only: ECMWF TCC < 10% always!

- Cool bias during daytime (12 UTC panels) over most of Africa and Europe
- Warm bias, although generally less pronounced, during night-time, i.e.,
- Underestimation of daily amplitude of Tskin, particularly in semi-aird regions
- Different pattern over subtropical regions (during the wet season)

ECMWF: Moving towards more realistic LAI

Results shown in previous slide: run (**control**) with the prescription of a single static LAI (used in ECMWF IFS until November 2010)

- LAI set to MODIS monthly means
- Revised (decrease) minimum stomatal resistance: crops, short grass, needle-leaf forest
- Initial conditions:

Off-line runs driven by ERA-Interim (Jan 2009 – Dec 2010) + LAI / stomata changes

Impact on Tskin is measured as Mean Absolute Error (MAE) reduction:

Sensitivity of variable Y is measured as simple difference:

$$\Delta = (Y_EXP - Y_CTL)$$

Impact on LST

Reduced LAI + seasonal variability

- 00 UTC: neutral impact.
- 12 UTC shows positive impact over limited areas: Sahel in January and July; Europe and Middle East in April (not shown)

Changes in Latent Heat Flux

- Positive impact for landcover types where LE decreases:
 - Tall grass;
 - Interrupted Forest;
 - Evergreen Broad-leaf Forest
- Why not more widespread?

Changes in Soil Moisture – top 1m of soil

 "LAI MODIS" simulations present higher soil moisture.

(mm)

-10

-15

-20

-35

- Lower LAI in the offline run (which sets up initial conditions) leads indeed to less evaporation in most places, and therefore to higher SM.
- A wetter soil compensates for lower of evaporation and limits the impact on skin temperature.

ECMWF: Aerodynamic Resistance

Roughness Length for Momentum (ZoM) Roughness Length for Heat (ZoH)

Control sensible heat flux: directly or via the near surface wind profile

- ✓ ZoM: revised in Nov 2011 to compensate an overestimation of 10m wind over a wide range of landcover types (increase in ZoM in grass, semi-desert, shrubs, crops, ...)
- ✓ **ZoH**: were revised to balance the increase in ZoM, and

$$Z_{oM}$$
 / Z_{oH} = 10 is set to Z_{oM} / Z_{oH} = 100 for (nearly) all surface types ...

... leading to an increased resistance to heat transfer almost everywhere.

ECMWF: Revised LAI + ZoM and ZoH

Impact on LST

- 00 UTC: neutral impact.
- 12 UTC shows wider areas of positive impact over limited areas: Most of northern Africa, southern Europe
- The impact also complements the (smaller) impact induced by the revised LAI

ECMWF: Revised LAI + ZoM and ZoH

LAI:

 Generalized increase in Latent Heat Flux (coinciding with the wetter soil);

LAI + Zo:

 Lower Sensible Heat: compatible with revised ZoH, complementing the changes induced by LAI alone.

ECMWF: Skin Conductivity

For completeness we assess the sensitivity of model skin temperature to surface conductivity, $\Lambda_{\rm skin}$.

$$\Lambda_{\text{skin}} \Rightarrow \Lambda_{\text{skin}}/2$$

- $ightharpoonup \Lambda_{
 m skin}$ controls the heat transfer to the ground by diffusion
- > A first approach to test the use of remotely sensed LST to estimate surface parameters, otherwise difficult to prescribe.

ECMWF: Revised LAI + Zo + Λskin

Impact on LST

- 00 UTC: less neutral than in previous experiments
- 12 UTC shows stronger positive impact on Tskin over a large part of the disk.

ECMWF: Revised LAI + Zo + Λskin

Daily cycles of LST / Tskin averaged over January 2010

- Figure illustrates well the impact of the various changes introduced in ECMWF surface scheme.
- Points out discrepancies in the phase between model and satellite (besides daily amplitude), which also need to be addressed.

Conclusions and Remarks

- Several studies reported cold biases in model surface temperatures when compared to satellite LST's - particularly daytime over arid regions, when compared either to satellite estimates.
- Biases of this type also identified in the ECMWF model. LST was then used to assess the impact of sfc parameters on mode skin temp & sfc fluxes.
- Changing static to monthly LAI: showed a limited impact on the model Tskin, with a slight improvement over semi-arid / sparsely vegetated regions (e.g., Sahel, Iberian Peninsula). The new (mostly lower LAI) leads higher soil moisture; this is the result of a new equilibrium reached by the model during the long integration with lower Evapotranspiration.
- The adjustment of ZoM and ZoH leads to an overall positive impact on daytime skin temperature, generally associated to a reduction of sensible heat flux (lower values of Z_{oH}). The impact is particularly relevant in non-vegetated areas that remained unaffected by the changes in the vegetation representation.
- The reduction of skin conductivity is shown to further strengthen the positive impact on model Tskin. A complete analysis of changes/ tuning of this parameter in other surface fluxes and other surface variables is still needed.