Tangent Linear and Adjoint Coding
Short Course
Day 2
Adjoint Coding

Thomas J. Kleespies
Room 810

Lessons Learned from Yesterday’s TL

ALL input levels must be perturbed simultaneously in both TL
and perturbed forward model

The limit test is performed on output channel Th_TL
| suggest picking channels that reflect different physics:

— 1: atemperature sensitive channel, 2: a water vapor channel,
— 3: An ozone sensitive channel, 4: a window channel

When in doubt, check all channels

| had suggested passing forward variables through COMMON.
Passing through calling parameters works just as well.

Active variables for this problem are:

— T, Tskin, tau, emiss

— Make TL variables for all of these and differentiate.
Who claims the the prize for first correct solution?

Further Lessons Learned

Enter Class Comments here:

Review of Previous Day Problem Set
1Code excerpt from Compbright Save TL.T90

I named common saves intermediate forward model values for use iIn TL,AD,K codes
Real B(46,19),Bs(19),TotalRad(19)
Common /radiances/ B,Bs,TotalRad

Do ichan =1 , M

I Initialize integrator
Sum_TL=0.

I Compute tl radiance for first level
Call Planck _TL(Vnu(ichan),T(1),T_TL(1),B(1,Ichan),B TL(1))

I Now compute radiances for the rest of the levels
Do level=2,N
Call Planck _TL(Vnu(ichan),T(level),T_TL(level),B(level,lIchan),B TL(level))

I Sum=Sum+.5*(B1+B2)*(Taul-Tau2) ! forward left commented in place
Sum_TL = Sum_TL +.5*(&
(B_TL(level-1) +B_TL(level))*(Tau (level-1,i1chan)-Tau (level,ichan)) &
+ (B (level-1,ichan)+B (Ievel,ifhan))*(Tau_TL(level—l,ichan)—Tau_TL(IeveI,ichan)) &

EndDo

I Surface term, ignoring downward reflected
Call Planck_TL(Vnu(ichan),Tskin,Tskin_TL,Bs(lchan),Bs _TL)

1Sum=Sum+Bs*Tau(N, ichan)*Emiss(ichan) ! forward left commented in place
Sum_TL = Sum_TL + Bs_ TL *Tau(N, ichan) *Emiss(ichan) &

+ Bs(ichan) *Tau_TL(N, ichan)*Emiss(ichan) &

+ Bs(ichan) *Tau(N, 1chan) *Emiss_TL(ichan)

I Now brightness temperature
Tb_TL(ichan) = 0
If(TotalRad(lchan).gt.0.) Then
gb?TL(ichan) = Bright_TL(Vnu(ichan),TotalRad(lchan),Sum TL,BCl1l(ichan),BC2(ichan))
Endl

EndDo ! ichan

I Code excerpt from Test Compbright_Save AD.f90

Do 1 =1 , Niter ! outer loop emulates taking the limit
Sign = -1.0
Do isign =1 , 2 ! inner loop delta x -> 0 +-
Sign = -Sign

I compute perturbed basic state
Call Compbright_Save(Vnu,

T+Sign*T_TL,
Tau+Sign*Tau_TL,
Tskin+Sign*Tskin_TL,
Emiss+Sign*Emiss_TL,
BC1,BC2,Nlevel,Nchan,
TbP)

Ro RO o RO Ro Qo

I compute forward model values and variables here for use with TL
Call Compbright_Save(Vnu,T,Tau,Tskin,Emiss,BC1,BC2,Nlevel ,Nchan,Th)

Call Compbright_Save TL(Vnu,
T,Sign*T_TL,
Tau,Sign*Tau_TL,
Tskin,Sign*Tskin_TL,
Emiss,Sign*Emiss_TL,
BC1,BC2,Nlevel ,Nchan,
Tb,Tb_TL)

Ro RO o RO Ro o

Ratio(isign) = (TbP(Ichan) - Tb(lchan)) / Tb_TL(lchan) I ratio
EndDo ! sign
Write(6,6120) i, Ratio(l),Ratio(2)
TLIn =TLin*.5 ! halve perturbation

EndDo ! i1ter
EndDo

HIRS channel

Iter

©OCoOoO~NOUOR~WNE

OCO0OO0OO0OO0OO0ORRRRRERRRERER

Pos
.034600735
.016974330
.008406639
.004179955
.002081037
.001035571
.000512838
.000218749
.000088096
.999957442
.999957442
.999434710
.999434710
.995252967
.995252967

ratio

Is this a bad result?

PRPFRPPRPOPFRPOOOOOOOOO

)
N

eg ratio

-968000233
-983676672
-991757333
-995861471
-997931898
-998961031
-999500036
-999761403
-999826789
-000218749
-999957442
.000480175
-001525640
-003616452
-003616452

Ratio starts to wander at iteration 10

Single precision

HIRS channel 5 Double Precision

Iter Pos ratio Neg ratio
1 1.034600773 0.968000178
2 1.016974788 0.983675551
3 1.008406038 0.991756553
4 1.004182687 0.995857961
5 1.002086261 0.997923901
6 1.001041860 0.998960680
7 1.000520613 0.999480023
8 1.000260227 0.999739932
9 1.000130094 0.999869946
10 1.000065042 0.999934968
11 1.000032520 0.999967483
12 1.000016260 0.999983741
13 1.000008130 0.999991870
14 1.000004065 0.999995935
15 1.000002032 0.999997968

Double precision reveals that wandering is a precision issue.
This passes the limit test.

Remember: direction of approach for pos and neg ratio may vary from variable to
variable.

Check each variable class.

What good are adjoints?

If your pickup is broken, your girl has left you, and your
dog has died:

Using adjoint techniques, you can :

 fix your pickup,
o get your girl back,

e and bring your dog back to life, as long as they have
been properly linearized. (at least in theory)

Adjoint coding objective

To make the linearized code run backwards.

E.g.: TL code inputs linearized temperature profile and
outputs linearized brightness temperature

Adjoint code inputs linearized brightness temperatures
and outputs linearized temperature profile

Note that | often interchange ‘linearized’ and
‘derivative’

Our objective Is the Jacobian

(0R, OR, R, OR,
oT, oT, aT, oT,
R, R, R, R,
oT, 0T, T, oT,
R, R, R, @R,
. |eT, ot oT. oT.
KO =R R, R, R,
aq, 09, oq, aq,
R, @R, R, @R,
M, G, G
R, R, R, &R,
aqn aqn aqn aqn

Recommended AD Naming Conventions

There is no ‘standard’ naming convention. Here is what |
recommend:

o Keep forward model variable names the same

 Append “ _AD” to forward model variable and routine
names to describe adjoint variables and routines

How do we derive the Adjoint Code

e By taking the transpose of the Tangent Linear Code

e It’s that simple.

Huh?

Well, maybe It’s not quite that simple.

Adjoint Coding Rules

Call forward model first to initialize forward variables
Reverse the order of TL routine calls

Convert Functions to Subroutines

Reverse the order of active loop indices

Reverse the order of code within loops and routines
Reverse the inputs and outputs of assignment statements
Accumulate the outputs of the assignment statements
Rename TL variables and routines to AD

Initializing output accumulators is VERY important

Example 1: reverse order of routines

TL Adjoint

Program Main_TL Program Main_AD
Call Subl Call Subl

Call Sub2 Call Sub2

Call Sub3 Call Sub3

Call Subl TL Call Sub3_AD
Call Sub2_TL Call Sub2_AD
Call Sub3 TL Call Subl_AD

End Program Main_TL End Program Main_AD

Example 2: Functions to Subroutines
Reverse code order, reverse assignment 1/O&accumulate

TL Adjoint
Real Function Bright TL Subroutine Bright_AD

(V,Radiance,Radiance_ AD,BC1,

(V,Radiance,Radiance_TL,BC1,BC2) BC2,TB, AD)

K2 = C2*V
K1 = C1*V*V*V

= C1*V*V*V linactive constants
TempThb _AD =0 !'initialize for each

TempTh_TL = Invocation
K2*Alog(K1/Radiance+71.)**(-2.) TempTb_AD =TempTb_AD +
* Radiance_TL/(Kt+Radiance) * BC2*Tb_AD (2)

K1/Radianc (1)

Radiance AD = Radiance AD +

L =BC2*TempTh TL (2) K2*Alog(K1/Radiance +]_..)**(-2.)
* TempTb_AD/(K1+Radiance) *
K1/Radiance (1)

Return
End Function Bright_TL End Subroutine Bright AD

Bright_

Return

Example 3 — from Compbright AD:

Reverse inputs and outputs of assignments

1 2
Sum TL = Sum_TL + Bs TL *Tau(N, ichan) *Emiss(ichan) &
+ Bs(ichan) *Tau2TL(N, i1chan)*Emiss(ichan) &
+ Bs(ichan) *Tau(N, ichan) *Emiss_TL(ichan)
4

Sum_AD = Sum_AD ! Doesn’t do anything, we can toss this statement
Bs AD = Bs AD + Sum_AD *Tau(N, 1chan)*Emiss(ichan)
Tau_AD(N, 1chan)= Tau AD(N,ichan) + Bs(ichan) *Sum_AD *Emiss(ichan)
Emiss AD(ichan)= Emiss AD(ichan) + Bs(ichan) *Tau(N, ichan)*Sum_AD

Accumulate Reverse inputs and outputs

TL

AD

Example 3 revisited ala G&K pg 12

m Is the current realization of the values

m

1 T
0 1
0 O
0 O

Taking the transpose

1
T €
BSI8|

B,'t

B.'¢

0
1
0

o O +— O
o rr O O

B

|T|

w

m-1

Example 4: Reverse indexing of loops

TL Do I =1 , Nlevel
B TI(I) = T TL(D*Tau(l) + T(H)*Tau_TL(I)
EndDo

AD Do I = Nlevel, 1 , -1

T AD(1) = T_AD(I) + B_AD(D)*Tau(l)
Tau AD(1) = Tau AD(I) + T(1)*B_AD(D)
EndDo

This illustrates reversing loop flow. Doesn’t make any difference
for this particular code fragment, but in general it does.

Initializing Accumulators

G&K say zero accumulators after done using them.

However, you have to zero them before you use them the first time,

SO just zero them before you start.

AD variables local to a routine should be zeroed there.

Adjoint testing

* Objective: Assure that the adjoint is the transpose of the tangent
linear

 Method: Construct Jacobians from TL and AD and compare

N inputs -> TL -> M outputs
M inputs -> AD -> N outputs

Call TL N times with the ith element=1, all other elements =0
Put output into ith row of an NxM array

Call AD M times with the jth element=1, all other elements=0
Put output into a jth row of an MxN array

Verify that AD = TLT to within machine precision

Tangent-Linear Output

"0R, 0R, R, R,
X X oX oX

K(X) =

For a single call to TL, output is derivative of each channel
radiance with respect to whole input state vector.

Adjoint Output
o
aT,
OR
at,
oR
ot
OR

aq,
OR

aq,
i
|4, |

K(x)" =

For a single call to AD, output Is derivative of all channel
radiances with respect to each element of the input state vector.

Filling the Jacobian

We call the TL and AD with all input elements set to zero except one so
as to isolate the derivative to a specific element of the Jacobian. This
gives the derivative R .

j

ox;

K(Xl) —

K(Xz) —

K(Xn)

TL Jacobian Construction

R, R, OR;

| OX; OX; OX,

'R, R, OR;

| OX, OX, OX,

R, R, OR;

| OX, OX, OX,

R

OR

R

m

0X,

m

OX,

OX

AD Jacobian Construction

Ky (%)

K (%)

...’Km(x)T

Machine Precision Considerations

Test that
Abs(TL-AD)/TL <MP

Rule of thumb:
MP = 1.e-7 for Single precision
MP = 1.e-12 for Double precision

Use errors intelligently

e [fthe AD/=TLT, use the location in the matrix to find
the error in the code.

e E.G.if Tsfc AD/=Tsfc_TT, look where Tsfc_AD is
computed for the error.

e Make sure AD variables are initialized to zero.

Adjoint Testing Example

I Compute forward model radiance

Call Planck(Vnu(lchan),Temp,B)

I Compute TL values

Temp TL = 1.0 I Initialize i1nput

B TL = 0.0 I Initialize output

Call Planck _TL(Vnu(lchan),Temp,Temp _TL,B,B TL) ! tangent linear model
I Compute AD values

B AD =1.0 I Initialize input

Temp_ AD = 0.0 ! Initialize output (accumulator)

Call Planck _AD(Vnu(lchan),Temp,Temp_AD,B,B_AD) ! Adjoint model

I Here the output of the TL i1s 1x1 and the output of the AD i1s 1x1,
I so Transpose(TL) = AD ==> B_TL = Temp_AD

Write(6,*) B _TL, Temp _AD, B _TL-Temp_AD

Problem Set for Tomorrow:

Construct routine COMPBRIGHT _SAVE_AD.F90 from TL
code COMPBRIGHT_TL_SAVE.F90 and test using techniques
learned today.

Low level routines PLANCK.F90, BRIGHT.F90,
PLANCK TL.F90, Bright AD.F90, Planck_AD.F90,
Bright AD.F90, COMPBRIGHT_SAVE.F90 and
COMPBRIGHT _SAVE TL.FOR

and their testing routines are provided.

Hint: use of EQUIVALENCE greatly eases the testing.

I TL input vector

Equivalence (TLin(1), T_TL)
Equivalence (TLin(47), Tau_ TL)
Equivalence (TLin(921), Emiss_TL)
Equivalence (TLin(940), Tskin_TL)

I AD output vector

Equivalence (ADout(1), T_AD)
Equivalence (ADout(47), Tau_AD)
Equivalence (ADout(921), Emiss_AD)
Equivalence (ADout(940), Tskin_AD)

Real Tb (Nchan) I brightness temperature
Real Tb_TL(nTLout) ! brightness temperature TL
Real Tb_AD(nADin) I brightness temperature AD

Real TLout(nTLout)
Real ADin (nADin)

Equivalence(TLout,Tb_TL)
Equivalence(ADin, Tb_AD)

Real TL(nTLin,nTLout)
Real AD(nADin,nADout)

Problem Set for Tomorrow cont:
Things to watch out for:

If test fails, don’t assume that it is in the AD code... it could
be In the testing logic.

Remember to zero outputs (accumulators).

Only set one input element to unity at a time. Rest are set
to zero.

| find that maybe half of the errors that | chase down are in
the testing logic.

Don’t walt to do this assignment.
It 1s difficult.

Good fun and have luck.

